Like most websites The Ophthalmologist uses cookies. In order to deliver a personalized, responsive service and to improve the site, we remember and store information about how you use it. Learn more.
Subspecialties Retina

Robot Dreams

At a Glance

  • The challenge for retinal cell therapy is positioning the therapeutic cells very precisely into the correct retinal layers
  • A collaborative project team is working on developing a device that provides the surgeon with delivery tubes capable of multiple orientations and flexibility of operation
  • The human factor is important to the researchers, who have been involving patients, and the broader public, in discussions about medical robotics
  • Patient representative, Douglas Tredget, shares his experience of being part of the robotics project.

At King’s and MEH, part of our remit is to develop clinically-relevant technology that will enhance the National Health Service’s capabilities. Developing a novel robotics system to enable very precise retinal manipulations is a great example. The idea is to improve operating room technology and – in particular – bring it up to speed with cell therapy, so that regenerative medicine for the retina can achieve its full potential.

Regenerate the degenerating

What made us commit to the project? In brief, an opportunity and a challenge. The opportunity is to help cure diseases that cause blindness. Today, gene and stem cell therapies have the potential not just to delay but also to reverse degenerative eye diseases – this is borne out by recent work on gene therapy for choroideremia and cell therapy for age-related macular degeneration (1). However, for retinal cell therapy to reach its full potential, therapeutic cells must be able to be positioned very precisely into the correct retinal layer – and this is the challenge we take on.

Current systems for delivering cells to the retina simply have not caught up with the advances – and requirements – of cell therapy. In fact, delivery systems such as manually-operated needles remain somewhat crude and limited by the physical capabilities of humans in terms of precision and tremor. This in turn limits the development of cell therapies. It is frustrating that the therapeutic cells exist but cannot be delivered to the 10-micron zone in the retina where they are needed.  The technology to enable such precision does not currently exist. We realize that we are at the limits of what the human hand can achieve, and this is impeding the translation of cell and molecular therapies into the clinic.

Read the full article now

Log in or register to read this article in full and gain access to The Ophthalmologist’s entire content archive. It’s FREE and always will be!


Or register now - it’s free and always will be!

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Ophthalmologist magazine

Or Login via Social Media

By clicking on any of the above social media links, you are agreeing to our Privacy Notice.

About the Authors

Christos Bergeles

Christos Bergeles is a Lecturer and Assistant Professor in the Translational Imaging Group in the Centre for Medical Image Computing at University College London’s Department of Medical Physics and Biomedical Engineering.

Lyndon da Cruz

Lyndon da Cruz works at the NIHR Biomedical Research Centre, Moorfields Eye Hospital and University College London

Register to The Ophthalmologist

Register to access our FREE online portfolio, request the magazine in print and manage your preferences.

You will benefit from:

  • Unlimited access to ALL articles
  • News, interviews & opinions from leading industry experts
  • Receive print (and PDF) copies of The Ophthalmologist magazine