Conexiant
Login
  • Corneal Physician
  • Glaucoma Physician
  • New Retinal Physician
  • Ophthalmology Management
  • Ophthalmic Professional
  • Presbyopia Physician
  • Retinal Physician
The Ophthalmologist
  • Explore

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Anterior Segment
    • Glaucoma
    • Retina

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Cataract
    • Cornea
    • Glaucoma
    • Neuro-ophthalmology
    • Oculoplastics
    • Optometry
    • Pediatric
    • Retina
  • Business

    Business & Profession

    • Professional Development
    • Business and Entrepreneurship
    • Practice Management
    • Health Economics & Policy
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

Advertisement
The Ophthalmologist / Issues / 2022 / Nov / PVR: Saved by the Gel
Retina Research & Innovations Business and Entrepreneurship

PVR: Saved by the Gel

A hydrogel-based scarring solution for retinal detachment and beyond

By Xinyi Su 11/10/2022 7 min read

Share

Wound healing is an important process, yet excessive wound healing and subsequent scarring is a major pathological factor in many diseases. Following ophthalmic surgery, scar tissue within the eye can cause many problems; for example, proliferative vitreoretinopathy (PVR) occurs in more than 75 percent of failed retinal detachment surgeries (1). PVR causes the retinal pigment epithelium (RPE) layer of cells to undergo epithelial to mesenchymal transition (EMT), hyper-proliferation, and abnormal migration to form intra-ocular scarring membranes. These fibrous-cellular membranes contract and cause the retina to detach yet again.

Current treatment options are limited to surgical removal of these scar membranes, with poor success rates. We have been investigating ways in which biomaterials can prevent this scarring. In particular, we are using hydrogels made of synthetic polymers. Hydrogels are heavily liquid saturated and solid gels that form from crosslinking polymers. They have tunable and versatile physical and chemical properties, so are ideal materials for biomedical applications. In our research, we demonstrated that a bio-functional thermogelling polymer alone is able to prevent retinal scarring in a pre-clinical rabbit model of PVR (2). In our lab disease model, we observed that this anti-scarring effect was primarily mediated via RPE cell internalization of the polymer, which led to impairment of EMT, suppression of hyper-proliferation, and migration. Genome-wide transcriptomic profiling revealed that this polymeric internalization upregulates the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway – a master regulator of antioxidant response homeostasis, as the key sensor and effector, whose activation was sufficient to prevent scarring. This study highlights the potential of using synthetic polymer alone to modulate cellular behavior and offers a potentially novel therapy for retinal scarring.

The science
 

Treatment of PVR is an unmet clinical need; the current surgical option is far from ideal. Our bio-functional polymer serves the dual function of a vitreous substitute for retinal detachment surgery, yet also elicits specific anti-scarring effects. It was surprising to us that this synthetic polymer alone (without additional therapeutics or modifications) is able to elicit specific biological responses to prevent PVR, challenging the belief that polymeric materials function merely as inert drug carriers and that a small molecule entity is required to achieve a therapeutic effect. Lastly, this unique bio-functionality of the polymer may be applicable beyond ophthalmology, where any anti-scarring outcome is desired.

Our hydrogel has a reversible physical behavior, where the manipulation of temperature can be used to tweak its physical state. In total, it has three states that depend on the number of individual polymers forming bonds with each other, which are, in sequential order of low to high polymeric bonds: single polymer, polymeric micelles, and hydrogel. When injected it easily flows at its low bonded state, but in the relative heat of the eye the polymer is in hydrogel form. In this hydrogel form, it undergoes slow erosion that releases polymeric sub-micron range micelles, which interact with the aberrant retinal cells to initiate a cascade of cellular reactions. The most important of these reactions being the aforementioned upregulation of the master regulator, NRF2.

Credit: Image sourced Unsplash.com

A better alternative
 

PVR has defied the preventative efforts of many researchers. Current agents used during vitreoretinal surgery include expansile gasses and silicone oil, which have been used since the 1960s. These have many inherent limitations, such as requirement for prolonged postoperative position, raised intraocular pressure, and risk of cataract formation; they have not been replaced because of the lack of better alternatives. Moreover, these agents don’t offer additional benefits of helping prevent PVR.

We consider our polymer with its intrinsic anti-scarring properties as a potential “replacement” in vitreoretinal surgeries. From a surgical perspective, the polymer’s spontaneously gelates upon contact with the eye (from a liquid state), retains viscosity despite injection via small bore needles, retains optical clarity to ensure good immediate postoperative vision, eliminates the need for postoperative heat posturing, is biocompatible and biodegradable, thus eliminating need for surgical removal, and enables a long-term sustained release of the bio-functional polymers to elicit a sustained biological effect.

The polymer used in the lab is currently being developed by Vitreogel Innovations Inc, a spin-off from the Translational Retinal Research Laboratory (TRRL), which is dedicated to developing polymer-based therapeutics for ophthalmology indications. Vitreogel Innovations Inc is an ISO 13485 (Medical Device Quality Systems) accredited company and is currently establishing a manufacturing process for large-scale polymer production under current good manufacturing practice (cGMP) guidelines. Our work serves as a proof of concept for the application of polymers to address PVR and will expand the pipeline of therapeutics being developed by the company.

Background Check
 

As a clinician-scientist and vitreo-retinal surgeon, my research focuses on understanding how different bio materials and regenerative cell therapies can be used to treat retinal degenerative disease. I balance my t ime in clinical care as a consultant retinal surgeon at the National University Hospital (NUH) in Singapore and lead a broad based retinal research program as Di vision Director & Senior Principal Investigator at Institute of Molecular and Cell Biology (IMCB, A*S TAR), Research Director at Department of Ophthalmolog y National University of Singapore (NUS), and Clinicia n-scientist at Singapore Eye Research Institute (SERI) .

I am passionate about applying my molecular bi ology training to the burgeoning field of retinal biolo gy in Singapore, and was awarded a nationally competiti ve biomedical engineering grant to develop a biodegrad able vitreous substitute in 2017. These early grant suc cesses kick-started my efforts into establishing one of Singapore’s first retinal stem cell biology and biomate rial labs.

Research ahead
 

Although the bio-functional polymer prevented retinal scarring in a large-eyed rabbit preclinical model, the safety and efficacy of this polymer in PVR prevention will have to be tested in more clinically relevant non-human primate disease models prior to translation to the clinic as they have the closes ocular structure to human through its effective endotamponade and intrinsic anti-scarring properties.

We will also continue to work on biomaterials to produce the next generation of bio-functional gels. Future studies will be focused on targeted modifications to the polymer to understand how changes in chemical structure affects biological activity. We plan to extensively characterize possible compositional variations and perform structure to function correlation studies.

We also wish to identify alternative applications beyond ophthalmology. The polymer’s ability to modulate the various cellular processes simultaneously – EMT, migration, and proliferation – provides potential expansion of its use beyond the eye. Notably, these cellular processes are key in the development of various cancers. Furthermore, the role of Nrf2 has been explored thoroughly in tissue scarring for dermatological applications, so the polymer could also be developed as a treatment for hypertrophic scars or keloid development. Beyond ophthalmology, the unique bio-functionality of the polymer could also be applied to other diseases, such as orthopedics, where intra-articular joint scarring may be a problem.

Hydrogel Logistics
 

Our team, in collaboration with Xian Jun Loh, described the first thermogel that functions bo th as a biodegradable vitreous tamponade and as a scaffold for regenerating the vitreous inside the e ye (3). The thermogel overcomes limitations of cur rent clinical gold standards of gas and silicone oi l, such as the need to adopt awkward facedown postu ring post-operatively, poor vision due to difference in refractive index, inability for air-travel due t o their expansive nature, and the requirement of a second removal surgery as they don’t degrade natura lly. Our technology has the potential to transform the standard of care in retinal detachment patients , by comprehensively addressing the above limitatio ns.

My role in this multi-disciplinary resea rch was in identifying a suitable hydrogel technolo gy to address the unmet clinical need. This require d approaching Loh for collaboration, from which a ma jor competitive IAF-PP grant was secured that allowe d us to co-develop the thermogel. Loh then validated the biomaterials in the lab and in animals (using n on-human primate surgical models), and to ensure we could successfully translate the work to the clini c, I patented this technology within the team, and co-founded our spin-off (Vitreogel Innovation). W e have since recruited an experienced CEO, and ar e in the process of raising seeds funding for cGM P compliant hydrogel production facilities for tr anslational into clinical trials.

References

  1. JC Pastor et al., “Proliferative vitreoretinopathy: risk factors and pathobiology,” 21, 127 (2002). PMID: 11906814.
  2. BH Parikh et al., “A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway,” Nat Commun, 13, 2796 (2022). PMID: 35589753.
  3. Z Liu et al., “Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade,” 3, 598 (2019). PMID: 30962587.

About the Author(s)

Xinyi Su

Director of the Division of Innovative Technologies, Institute of Molecular Cell Biology, A*STAR, Singapore. Relevant disclosure: co-founder of Vitreogel Innovation.

More Articles by Xinyi Su

Related Content

Newsletters

Receive the latest Ophthalmology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

False

Advertisement

Explore More in Ophthalmology

Dive deeper into the world of Ophthalmology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement
The Ophthalmologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.

Disclaimer

The Ophthalmologist website is intended solely for the eyes of healthcare professionals. Please confirm below: