Conexiant
Login
  • Corneal Physician
  • Glaucoma Physician
  • New Retinal Physician
  • Ophthalmology Management
  • Ophthalmic Professional
  • Presbyopia Physician
  • Retinal Physician
The Ophthalmologist
  • Explore

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Anterior Segment
    • Glaucoma
    • Retina

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Cataract
    • Cornea
    • Glaucoma
    • Neuro-ophthalmology
    • Oculoplastics
    • Pediatric
    • Retina
  • Business

    Business & Profession

    • Professional Development
    • Business and Entrepreneurship
    • Practice Management
    • Health Economics & Policy
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

Advertisement
The Ophthalmologist / Issues / 2022 / Nov / Photo Opportunity
Retina Research & Innovations

Photo Opportunity

Researchers partially restore vision using photoreceptor-like cells derived from human amniotic epithelial stem cells

By Geoffrey Potjewyd 11/1/2022 2 min read

Share

Credit: The placenta and umbilical cord. Watercolour, 1800s. Credit: Wellcome Collection.

A multi-institute research team from China has partially restored vision and retinal structure in rats with retinal degeneration by transplanting photoreceptor-like cells that were grown from human amniotic epithelial stem cells (hAESCs) (1).

To differentiate the hAESCs, the group treated them with a range of agents designed to drive their growth into the desired cell type – ultimately producing photoreceptor-like cells that demonstrate the morphology, key expression markers, and the behavior of natural photoreceptor cells.

But after differentiating the cells, there remains the big hurdle of graft rejection. Fortunately, contrary to immunogenicity concerns with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hAESCs – and the photoreceptor-like cells grown from them – appear to have low levels of immunogenicity and were successfully transplanted into the rats.

hAESCs also overcome a major ethical objection to using embryonic-sourced stem cells; hAESCs are obtained from the amniotic membrane of the placenta, which is normally disposed of after birth.

Overall, given the partial restoration of eyesight in rats, the low-risk of immune rejection, and the efficient sourcing of tissue and differentiation procedures compared with other stem cell methods, the authors were hopeful about the future of this “promising” technique but noted the need for additional studies into optimal cell doses and delivery schemes.

References

  1. J Li et al., Int J Mol Sci, 23, 8722 (2022). PMID: 35955866.

About the Author(s)

Geoffrey Potjewyd

The lion’s share of my PhD was spent in the lab, and though I mostly enjoyed it (mostly), what I particularly liked was the opportunity to learn about the latest breakthroughs in research. Communicating science to a wider audience allows me to scratch that itch without working all week only to find my stem cell culture has given up the ghost on the Friday (I’m not bitter). Fortunately for me, it turns out writing is actually fun – so by working for Texere I get to do it every day, whilst still being an active member of the clinical and research community.

More Articles by Geoffrey Potjewyd

Related Content

Newsletters

Receive the latest Ophthalmology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

False

Advertisement

Explore More in Ophthalmology

Dive deeper into the world of Ophthalmology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement
The Ophthalmologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.

Disclaimer

The Ophthalmologist website is intended solely for the eyes of healthcare professionals. Please confirm below: