Conexiant
Login
  • Corneal Physician
  • Glaucoma Physician
  • New Retinal Physician
  • Ophthalmology Management
  • Ophthalmic Professional
  • Presbyopia Physician
  • Retinal Physician
The Ophthalmologist
  • Explore

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Anterior Segment
    • Glaucoma
    • Retina

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Cataract
    • Cornea
    • Glaucoma
    • Neuro-ophthalmology
    • Oculoplastics
    • Pediatric
    • Retina
  • Business

    Business & Profession

    • Professional Development
    • Business and Entrepreneurship
    • Practice Management
    • Health Economics & Policy
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

Advertisement
The Ophthalmologist / Issues / 2014 / Aug / The Art Of Eyes
Retina Health Economics and Policy

The Art Of Eyes

Popular culture has always viewed eyes as being things of beauty. But there’s more to the eye than the color of your irides. Advances in imaging technology have enabled us to see far more than could ever have been imagined. And on closer inspection they’re still beautiful.

8/1/2014 1 min read

Share

0714-401-img.1

A cluster of nascent retinae generated from 3D embryonic stem cell cultures.

The retinae contain photoreceptor precursors that express normal photoreceptor proteins, including visual pigment. Rhodopsin is labeled green and the phototransduction enzyme, recoverin, is labeled red. Image by Anai Gonzalez-Cordero, a post-doctoral researcher at University College London, UK.

dashed line

Colorful confocal characterizations

Exploiting the power of confocal microscopy to characterize the retinae of mice. A cross section of an adult wild-type mouse retina immunostained for reactive gliosis markers, showing little in the way of glial reactivity and an orderly retinal architecture. Amanda Barber is a Sir Henry Wellcome post-doctoral research fellow at the University of Cambridge, UK.

0714-402-img.2

dashed line

Subretinal signaling secrets

Transplantation studies reveal new aspects of photoreceptor development. Photoreceptor precursor cells transplanted from 4-day old mouse pups into the retinae of adult mice, do one of two things. Some integrate into the host retina, but others fail to do so and aggregate, forming clusters. Despite failing to integrate, subretinally-located clusters (top) develop outer segments (green), yet their counterparts at the vitreal side of retina (bottom) fail to develop them, indicating that important extracellular signals are present at the subretinal space that allow the final differentiation and maturation of these photoreceptors Dominic Erbele is a post-doctoral researcher at the Technical University of Dresden, Germany.

0714-401-img3

dashed line

Everyday art

A couple of beautiful images from patients presenting to an ophthalmology department in Prague.

Conventional meibography using a transilluminating light probe.

0714-401-img4

Chocolate cake-like iris.

Bohdan Kousal is a Prague-based medical retina specialist, and a co-founder of the Ophthalmic Genetic Center at the Czech capital city’s Charles University.

0714-401-img5

dashed line

Optic crush aftermath

Immunohistochemical analyses reveal the extent of the damage. Optic nerve crush (ONC) was performed on deeply anesthetized adult male Wistar rats, using specially-designed cross-action tweezers. Crushes (of uniform intensity) were performed for 30 seconds, and time points from 6 hours to 20 days were investigated via immunohistochemistry. Sven Schnichels is a Laboratory Head at the University Eye Hospital, Tübingen, Germany.

Untreated (control) optic nerve:

dashed line

Waiting for the clinic to open

“A blind man is a dead man” – Peruvian proverb. Fewer than one in five Peruvians have health insurance. Inevitably, many are blinded by age-related eye disease – even relatively easily remedied ones like cataract. Silvia Frilo is an ophthalmologist who treats as many of the poorest in Peruvian society at the CEPRECE clinic in Cusco. This lady is one of his patients, waiting for the clinic to open. Image provided by Bodo Hufeland of Geuder AG.

0714-401-img6

dashed line

Anatomy of a sub-Bowman’s keratomileusis flap

Femtosecond lasers gather a lot of attention, but it’s worth remembering the advantages of the microkeratome, and what it can achieve. Here I’ve used an automated blade microkeratome (One Use-Plus, Moria SA, Antony, France) to cut a sub-100 µm flap. The flaps appear smoother and less traumatized than those cut with a femtosecond laser, and since no bubbles are formed, there are no bubble-related issues to worry about, and you don’t run the risk of opaque bubble layer formation, laser-induced light sensitivity, or plasma bubble breakthrough. Non-laser flaps can be lifted without tissue dissection and they do not require hourly steroids to suppress the plasma-induced inflammatory response. James Lewis is the Director of Cataract, LASIK and Corneal Surgery at the Pennsylvania College of Optometry, Salus University, Elkins Park, PA, US

0714-401-img27

dashed line

Heidelberg Engineering stands for excellence in diagnostic imaging. A broad offering of multi-modal imaging devices provides ophthalmologists and optometrists with versatile imaging platforms for daily clinical practice. Early diagnosis and treatment monitoring with Heidelberg Engineering devices allows clinicians to take advantage of advanced therapeutics. With its passion for technology, Heidelberg Engineering is blending the newest research findings with established clinical methods to build devices for daily practice. Through constant innovation the company extends the range of available modules for its future proof expandable platforms. Image data workflow solutions support the easy integration of the broad range of devices.

(1) Get the full picture  Multi-modality diagnostic imaging (SPECTRALIS®): MultiColor scanning laser imaging

(1a, geographic atrophy; 1b, vitreoretinal traction), BluePeak blue laser autofluorescence (1c, cone-rod dystrophy), IR reflectance imaging (1d, reticular drusen), spectral-domain OCT (1e, cystoid macular edema)

0714-401-img28

(2) See more  Ultra-Widefield FA angiography (SPECTRALIS®): vasculitis (3) See in more detail  High-resolution cSLO imaging of photoreceptors (experimental set-up) and (4) confocal microscopy of corneal stromal nerve fibers (HRT Rostock Cornea Module).

0714-401-img29

dashed line

Retinal detachment

An ultra-widefield infrared retinal scan that clearly shows not only the full extent of this patient’s retinal detachment, but also other changes in the inferior and temporal periphery. Courtesy of Heidelberg Engineering.

0714-401-img30

dashed line

Where the cones are kept

The macula lutea and foveal avascular zone captured in fine detail. Fluorescein angiogram images of a fovea centralis in a depressed area at the center of the macula lutea, measuring about 1.5 mm in diameter. Here, we see a fovea centralis in a depressed area in the center of the macula lutea, measuring about 1.5 mm in diameter. Filofteia Tacea, an Ophthalmology Fellow, and Richard Hancock, an Ophthalmic Photographer at based at Aintree University Hospital, Liverpool, UK.

0714-401-img31

A rose thorn in the lens

A patient was gardening when he was struck by a rose bush branch in his face and eye. Despite having a painful scratchy irritation, he waited several hours to obtain emergency care, and once he did, was immediately referred to an ophthalmologist. On examination, an obvious impact location on the cornea was observed.  When tested, it was Seidel negative, meaning that it was either non-penetrating or self-sealed.  An Anterior Chamber SD-OCT test was performed using the Optovie RTVue 100. Left:  The red arrows show the path of the penetrating thorn. The blue arrow shows some of the damage from the trauma. Right: The rose thorn penetrated the lens (red arrow), and the aqueous humor hydrated the lens, making it "bloom" (yellow arrows). The patient required urgent lens extraction and IOL implantation to restore near normal vision and remove the risk of angle closure. Image courtesy of Bill Dilworth and Peter Naismith of Optovue Inc., Freemont, CA, USA.

0714-401-img32

dashed line

Post-cataract fibrosis

Posterior capsule opacification is caused by the formation of fibrosis on the posterior lens capsule after cataract surgery. Treatment is by YAG laser capsulotomy, an outpatient procedure in which a laser is used to remove the fibrosis. Image contributed by Kim Baxter, Ophthalmic Photography Team Leader at Addenbrooke’s Hospital, Cambridge, UK.

0714-401-img33

dashed line

Pigment deposits

A moderate slit beam is projected at a 45° angle to the lens pathology – in this case, pigment deposits – and is directly illuminated. The pupil was dilated to provide the most effective imaging possible. Image captured by Cees van Beek using the Haag-Streit BX 900.

0714-401-img34

dashed line

Bravo, BRVO

Common diagnoses can be beautiful. A 50-year old patient presented with left eye metamorphopsia. His best-corrected visual acuity was 10/10 and fundoscopy revealed a typical supero-temporal branch retinal vein occlusion (BRVO) secondary to thearteriovenous crossing. Four months after the diagnosis, fluorescein angiography imaging revealed a remarkable BRVO with anatomical characteristics consistent with an ischemic transition. Image contributed by Inês Martins de Almeida, of the Centro Hospitalar Entre Douro e Vouga (CHEDV), Feira, Portugal.

0714-401-img36

dashed line

An incredible CRAO

A magnificent image of a maleficent manifestation. Central retinal artery occlusion with sparing of the cilioretinal artery territory and whitening of the remaining posterior pole retina in a 47 year-old male with undiagnosed systemic hypertension. Image contributed by João Pedro Marques, Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.

0714-401-img35

dashed line

Newly transplanted, but a typical morphology

Three dimensional (3D) reconstruction of a transplanted photoreceptor (green) generated from 3D culture of embryonic stem cells. The newly integrated cell resembles a typical rod photoreceptor. Image contributed by University College London researcher Colin Chu.

0714-401-img37

dashed line

Transplanted photoreceptors

Here, we see the detail of integrated embryonic stem cell-derived photoreceptors following transplantation into a degenerate adult mouse retina. The transplanted photoreceptors express the essential phototransduction enzyme, α-Transducin (red), which is absent in the recipient retina. Image contributed by University College London researcher Anai Gonzalez-Cordero

0714-401-img38

Related Content

Newsletters

Receive the latest Ophthalmology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

False

Advertisement

False

Advertisement

Explore More in Ophthalmology

Dive deeper into the world of Ophthalmology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement
The Ophthalmologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.

Disclaimer

The Ophthalmologist website is intended solely for the eyes of healthcare professionals. Please confirm below: