In My View
Modest monovision for balancing near and far vision
14 - 15

Cornea and OSD
Tissue templating to meet the transplant demand
27 - 29

Profession
What skills are needed to get to the top – and stay there?
46 - 49

Sitting Down With
One in a million, Gladys Atto
50 - 51

Vision Research in the Spotlight
The ARVO leadership team provide an insight into the association’s evolution – and the important role it has played in their careers
16 - 25
WHAT COULD SHE SEE THIS YEAR?

EYLEA® (aflibercept) Injection
For Intravitreal Injection

Inspired by a real patient with Wet AMD.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS
- EYLEA is contraindicated in patients with ocular or periocular infections, active intraocular inflammation, or known hypersensitivity to aflibercept or to any of the excipients in EYLEA.

WARNINGS AND PRECAUTIONS
- Intravitreal injections, including those with EYLEA, have been associated with endophthalmitis and retinal detachments. Proper aseptic injection technique must always be used when administering EYLEA. Patients should be instructed to report any symptoms suggestive of endophthalmitis or retinal detachment without delay and should be managed appropriately. Intraocular inflammation has been reported with the use of EYLEA.

- Acute increases in intraocular pressure have been seen within 60 minutes of intravitreal injection, including with EYLEA. Sustained increases in intraocular pressure have also been reported after repeated intravitreal dosing with VEGF inhibitors. Intraocular pressure and the perfusion of the optic nerve head should be monitored and managed appropriately.

- There is a potential risk of arterial thromboembolic events (ATEs) following intravitreal use of VEGF inhibitors, including EYLEA. ATEs are defined as nonfatal stroke, nonfatal myocardial infarction, or vascular death (including deaths of unknown cause). The incidence of reported thromboembolic events in wet AMD studies during the first year was 1.8% (32 out of 1824) in the combined group of patients treated with EYLEA compared with 1.5% (9 out of 595) in patients treated with ranibizumab; through 96 weeks, the incidence was 3.3% (60 out of 1824) in the EYLEA group compared with 3.2% (19 out of 595) in the ranibizumab group. The incidence in the DME studies from baseline to week 52 was 3.3% (19 out of 578) in the combined group of patients treated with EYLEA compared with 2.8% (8 out of 287) in the control group; from baseline to week 100, the incidence was 6.4% (37 out of 578) in the combined group of patients treated with EYLEA compared with 4.2% (12 out of 287) in the control group. There were no reported thromboembolic events in the patients treated with EYLEA in the first six months of the RVO studies.

PROVEN VISUAL OUTCOMES AT YEAR 1 IN THE VIEW STUDIES

Fewer injections with EYLEA Q8 vs ranibizumab Q4

Demonstrated in the largest phase 3 anti-VEGF trials completed to date in Wet AMD (N=2412)\(^1\)\(^-\)\(^3\)

Proportion of patients who maintained vision (<15 ETDRS letters lost of BCVA) at Year 1 from baseline\(^1\)\(^-\)\(^3\),\(^*\)

<table>
<thead>
<tr>
<th></th>
<th>VIEW 1</th>
<th>VIEW 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYLEA Q4</td>
<td>95% (12.5 injections(^†))</td>
<td>95% (12.6 injections(^†))</td>
</tr>
<tr>
<td>EYLEA Q8(^‡)</td>
<td>94% (7.5 injections(^†))</td>
<td>95% (7.7 injections(^†))</td>
</tr>
<tr>
<td>ranibizumab Q4</td>
<td>94% (12.1 injections(^†))</td>
<td>95% (12.7 injections(^†))</td>
</tr>
</tbody>
</table>

EYLEA was clinically equivalent to ranibizumab.

VIEW 1 and VIEW 2 study designs: Two multicenter, double-masked clinical studies in which patients with Wet AMD (N=2412; age range: 49-99 years, with a mean of 76 years) were randomized to receive: 1) EYLEA 2 mg Q8 following 3 initial monthly doses; 2) EYLEA 2 mg Q4; 3) EYLEA 0.5 mg Q4; or 4) ranibizumab 0.5 mg Q4. Protocol-specified visits occurred every 28 (±3) days.\(^1\) In both studies, the primary efficacy endpoint was the proportion of patients with Wet AMD who maintained vision, defined as losing <15 letters of visual acuity at Week 52, compared with baseline.\(^1\)

SEE WHAT EYLEA COULD DO FOR YOUR PATIENTS WITH WET AMD AT HCP.EYLEA.US

anti-VEGF, anti–vascular endothelial growth factor; BCVA, best-corrected visual acuity; ETDRS, Early Treatment Diabetic Retinopathy Study; Q4, every 4 weeks; Q8, every 8 weeks.

ADVERSE REACTIONS

- Serious adverse reactions related to the injection procedure have occurred in <0.1% of intravitreal injections with EYLEA including endophthalmitis and retinal detachment.
- The most common adverse reactions (≥5%) reported in patients receiving EYLEA were conjunctival hemorrhage, eye pain, cataract, vitreous detachment, vitreous floaters, and intraocular pressure increased.
- Patients may experience temporary visual disturbances after an intravitreal injection with EYLEA and the associated eye examinations. Advise patients not to drive or use machinery until visual function has recovered sufficiently.

INDICATIONS

EYLEA\(^®\) (aflibercept) Injection 2 mg (0.05 mL) is indicated for the treatment of patients with Neovascular (Wet) Age-related Macular Degeneration (AMD), Macular Edema following Retinal Vein Occlusion (RVO), Diabetic Macular Edema (DME), and Diabetic Retinopathy (DR).

Please see Brief Summary of Prescribing Information on the following page.
Injection site hemorrhage 1% 2% 2% 2%
Eyelid edema 1% 2% 2% 3%
Foreign body sensation in eyes 3% 3% 3% 3%
Vitreous detachment 3% 4% 3% 3%
Lacrimation increased 3% 4% 3% 3%
Injection site pain 3% 1% 1% 1%
Pain behind eyes 1% 1% 1% 1%
Cataract 1% 1% 1% 1%
Retinal detachment ≥3 mm 1% 1% 1% 1%
Less common adverse reactions reported in <1% of the patients treated with EYLEA in the CRVO and BRVO studies were corneal edema, retinal tear, hypersensitivity, and endophthalmitis.

Macular Edema Following Retinal Vein Occlusion (RVO). The data described below reflect exposure to EYLEA in 1,502 patients with macular edema following a 2-mg dose in 2 double-masked, controlled clinical studies (WIVD and VISTA) from baseline to week 52 and from baseline to week 100.

| Table 2: Most Common Adverse Reactions (≥2%) in RVO Studies |
|-----------------|-----------------|-----------------|
| **Adverse Reaction** | **EYLEA** (N=1824) | **Control** (N=578) |
| Eye pain | 15% | 14% |
| Conjunctival hemorrhage | 15% | 14% |
| Intravitreal pressure increased | 8% | 6% |
| Corneal epithelial defect | 5% | 4% |
| Retinal detachment | 1% | 1% |
| Lacrimation increased | 1% | 1% |
| Intravitreal injection | 1% | 1% |
| Cataract | 1% | 1% |
| Retinal detachment ≥3 mm | 1% | 1% |
| Vitreous detachment | 1% | 1% |
| Injection site pain | 1% | 1% |
| Pain behind eyes | 1% | 1% |
| Cataract | 1% | 1% |
| Retinal detachment ≥3 mm | 1% | 1% |

Less common adverse reactions reported in <1% of the patients treated with EYLEA in the CRVO studies were corneal edema, retinal tear, hypersensitivity, and endophthalmitis.

Macular Edema Diabetic (DME) and Diabetic Retinopathy (DR). The data described below reflect exposure to EYLEA in 578 patients with diabetic macular edema with a 2-mg dose in 2 double-masked, controlled clinical studies (WIVD and VISTA) from baseline to week 52 and from baseline to week 100.

| Table 3: Most Common Adverse Reactions (≥2%) in DME Studies |
|-----------------|-----------------|-----------------|
| **Adverse Reaction** | **Baseline to Week 52** | **Baseline to Week 100** |
| Eye pain | 13% | 5% |
| Intravitreal pressure increased | 8% | 6% |
| Corneal epithelial defect | 5% | 4% |
| Retinal detachment | 1% | 1% |
| Lacrimation increased | 1% | 1% |
| Intravitreal injection | 1% | 1% |
| Cataract | 1% | 1% |
| Retinal detachment ≥3 mm | 1% | 1% |

Less common adverse reactions reported in <1% of the patients treated with EYLEA were hypersensitivity, systemic inflammation, and injection site hemorrhage.

Use in Specific Populations

8.3 Pregnancy Risk Summary

Adverse and well-controlled studies with EYLEA have not been conducted in pregnant women. Aflibercept produced adverse embryofetal effects in rabbits, including external, visceral, and skeletal malformations. A total fetal Observed Adverse Effect Level (NOAEL) was not identified. At the lowest dose shown to produce adverse embryofetal effects, systemic exposure (AUC) of aflibercept (free aflibercept) was approximately 6 times higher than AUC values observed in humans after a single intravitreal treatment at the recommended clinical dose (see Animal Data). Animal reproduction studies are not always predictive of human response, and it is not known whether EYLEA can cause fetal harm when administered to pregnant women. Based on the anti-VEGF mechanism of action for aflibercept, treatment with EYLEA may pose a risk to human embryofetal development. EYLEA should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. The background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

8.4 Lactation

Data

Animal Data

In two embryofetal development studies, aflibercept produced adverse embryofetal effects when administered every three days during organogenesis to pregnant rabbits at intravenous doses of ≥3 mg/kg or every six days during organogenesis at subcutaneous dose of ≥0.5 mg/kg. Adverse embryofetal effects included increased incidences of postimplantation loss and fetal malformations, including anasarca, umbilical cord hernia, gastroschisis, left-sided heart defect, edema, intracranial anomalies, bone defects and miscarriage in clinically recognized pregnancies is 2-4% and ≥5-10%, respectively.

8.5 Females and Males of Reproductive Potential

8.6 Geriatric Use

In the clinical studies, approximately 76% (204/271) of patients randomized to treatment with EYLEA were ≥65 years of age and approximately 46% (125/271) were ≥75 years of age. No significant differences in efficacy or safety were seen with increasing age in these studies.

17 PATIENT COUNSELING INFORMATION

In the case of no data regarding the effects of aflibercept on human fertility. Aflibercept adversely affected female and male reproductive systems in cynomolgus monkeys when administered by intravenous injection at a dose approximately 1500 times higher than the systemic levels observed humans with an intravitreal dose of 2 mg. No Observed Adverse Effect Level (NOAEL) was not identified. These findings were reversible within 20 weeks after cessation of treatment.

8.7 Pediatric Use

There is no information regarding the presence of aflibercept in human milk, the effects of the drug on the breastfed infant, or the effects of the drug on milk production/excretion. Because many drugs are excreted in human milk, and because the potential for serious adverse reactions to breastfeed is not well understood, it is not known whether aflibercept in human milk can affect breastfed infants. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for EYLEA and any potential adverse effects on the breastfed child from EYLEA.
If Not Science, Then What?

*I love being a vision researcher – like most people I know in this field. And if that ever changes, I will, too."

I tell prospective graduate students and postdocs that our work as researchers can be exciting or groundbreaking but that it can equally be routine or even mundane. Sometimes research is frustrating. You may face problems that need to be fixed so you can move on – but the solution may be elusive. If spending days (and nights) scratching your head doesn’t float your boat, research may not be for you. If you love a challenge and the associated problem-solving process, you’re likely to succeed in research and move forward.

But what if you start getting up most mornings not feeling excited about going into work (or, worse, you’re dreading it). You can take that as a very clear sign that something needs to change.

The need for change doesn’t always mean you have to search for a whole new career – you can start with small steps. Perhaps you’re on the wrong project, in the wrong team, in the wrong country… When small steps are not enough, you may have to take a wider look at your life and focus on what you really want.

I tell my students and postdocs to choose projects intentionally, with a clear and logical goal in mind, so that if they decide that they don’t want to stay in academia, they have still developed the right skill set to succeed, regardless of what they might end up doing. Some end up working in academia, some in industry, some leave science altogether. All I care about – and all they should care about – is that they’re doing well and that they’re happy.

As you can probably tell, I think a lot about recognizing the need for change these days – and I suspect I would have made more changes if I’d spent more time thinking in the past. For example, when I was a younger scientist, arguably I should have changed projects faster than I did. Instead, I was stubborn, insisting that I would succeed at what I was doing – but was I happy? A more profound question: if I had done things differently, would I still be who I am today? That I cannot answer, but I do tell those following in my footsteps that the enjoyment they get from their work is essential. And I think that applies to everyone, including ophthalmologists.

Maureen McCall

Vice President of The Association for Research in Vision and Ophthalmology (ARVO)

Maureen G McCall
On The Cover

Spotlight on ARVO leadership
People illustrations for cover feature sourced from shutterstock.com

Contents

Editorial
05 If Not Science, Then What? by Maureen McCall

Upfront
08 The latest news, views and research – from the latest discovery of a new class of retinal cell, right to the chronicles of ophthalmology with our consultant historian ophthalmologist Andrzej Grzybowski

In My View
14 Closing the Distance
Graham Barrett explores modest monovision as a strategy for balancing near and far vision

Feature
16 Vision Research in the Spotlight
Meet The Association for Research in Vision and Ophthalmology (ARVO) leadership team, as they talk about how the organization has developed and overcome challenges over recent years, and the role it has played in their careers
Practice Fundamentals

27 Cornea and OSD
Che J. Connon outlines his plans to grow cornea to meet the impending need for corneal transplant tissue

31 Cataract and Refractive
Nine renowned surgeons share their perspectives on the recently approved drops for presbyopia

37 Glaucoma
How has COVID-19 affected glaucoma management in different parts of the world? Three glaucoma specialists offer their outlooks.

43 Retina
Retinal tissue goes from bench to bedside using 3D printing and decellularized ECM

Profession

46 Raising the Bar
Matthew O’Donnell outlines the skills that separate a good ophthalmologist from a great one

Sitting Down With

50 Gladys Atto, ophthalmologist at Moroto Regional Referral Hospital, Moroto, Uganda
L-ORD Overthrown?

A hybrid approach to disease modeling identifies both a gene therapy and diabetes drug with the potential to tackle late-onset retinal degeneration (L-ORD)? Well, knowledge is power – and researchers from the National Eye Institute (NEI) have developed a hybrid tissue engineering and computer modeling approach to decipher L-ORD pathology (1). Not content with one win, they also identified two treatment options at opposite ends of the drug development spectrum – a novel gene therapy and the repurposing of a common diabetes drug (metformin).

Led by Kapil Bharti, the team grew retinal pigment epithelium (RPE) from the stem cells of a patient with the genetic mutation in CTRP5 that causes L-ORD. First, they confirmed that the patient RPE model expressed low amounts CTRP5 protein, which their computer model identified as less likely to bind and inhibit AMPK signaling. Second, they used the patient RPE model to test and prove that inhibition of AMPK signaling reduces L-ORD pathology – a target in the crosshairs. “This hybrid approach has huge potential, because it allows us to test molecular simulations as actual experiments in patient cells,” says Bharti. “But this is limited to a small number of cases where the molecular structure of the protein under investigation is known. Our key advantage here was the ability to use patient eye (RPE) cells made from their stem cells.”

The findings led to the assessment of a potential gene therapy to inhibit AMPK signaling via CTRP5 overexpression and the use of metformin to modulate AMPK activity – both worked but which avenue to take forward? “Gene therapy trials may take time to set up because it requires extensive preclinical work upfront demonstrating safety of gene therapy constructs manufactured under clinical settings,” Bharti explains. “Because of the complexity and significant cost associated with gene and cell therapies, we chose to also test metformin, which has decades of clinical use history. In fact, metformin trials are already being planned by our colleagues and the NEI will soon be announcing an oral metformin-based trial for L-ORD. Stay tuned.”

Reference

A study by researchers from the University of Miami, Florida, USA, has shown that pain experienced by dry eye patients depends on the way their nervous system responds to pain signals (1). To assess how the nervous system reacts to these signals in patients with chronic, painful dry eye, researchers used a technique called conditioned pain modulation (CPM). After evaluating 296 patients, they established that those patients had a normal to high CPM response, which suggests that treatments for painful dry eye may be improved by focusing on the nervous system.

Since the start of the COVID-19 pandemic, most school pupils have had to use virtual lessons for extended periods of time. Now, research from Wills Eye Hospital, Philadelphia, Pennsylvania, USA, has confirmed that increased screen time due to virtual learning has led to more eye strain and convergence insufficiency in children – a condition where eyes are unable to work together when looking at objects up close. This can result in double or blurred vision and make reading difficult for children. Frequent checks for those symptoms, encouraging breaks and frequent blinking helps to resolve eye strain symptoms (2).

The AAO has outlined the top four issues threatening ophthalmologists’ financial stability. These include: Medicare physician payment fee cuts, with US-based physicians facing drastic cuts from January 2022 as well as expiry of pandemic waiver and a further cut from implementing “PayGo” balance budget rules; surgeon and facility payments for cataract and MIGS codes, with the Centers of Medicare & Medicaid only adding $34 for MIGS procedures to be added to the cost of standalone cataract surgery; lack of equity for post-operative visits included in the Medicare global surgical payments; and prior authorization and step therapy burdens.

Strokes are common, and though rapid treatment can save lives and reduce residual damage to the brain, 30 percent of patients suffer some vision loss as a consequence of stroke. Of course, the severity of damage to vision varies – as does the physical location of disruption to the visual pathway, which can result in non-optimal treatment regimens at a time when effective action is crucial to saving sight.

Researchers have found a way to improve our understanding of post-stroke sight – using multimodal MRI-based mapping of the brain (1) – with the aim of better guiding treatment. Typically, perimetry is used to measure only the visual field following stroke. But, through brain mapping, they establish whether visual field loss is caused by the absence of gray matter or disconnections between areas of cortical white matter – enabling targeted visual rehabilitation to maximise recovery.

References

2. J Lavrich, Presented at 125th AAO, November 14, 2021, New Orleans, US.
Diseases of aging tend not to be found in isolation; comorbidity is common, with one or more diseases exacerbating the progression of others in a damaging feedback loop of pathology. Vision loss and dementia have long been tied together in this way, with poor eyesight often leading to isolation and inactivity that can accelerate dementia. Dementia already places a huge burden on healthcare systems, as well as patients and their families – and this burden is only set to rise with an increasingly aged population.

Evasive “cataraction”

So, is it possible to tackle the growing rates of dementia by targeting cataracts? In the first study to directly explore the relationship, researchers from the University of Washington, USA, found that cataract removal significantly reduces the risk of the patient developing dementia (1). The researchers analyzed a large pool of data from the Adult Changes in Thought study; specifically, the team assessed 3,038 participants, all of whom were over the age of 65 with glaucoma or cataracts before enrollment. Interestingly, glaucoma surgery did not appear to affect the risk of dementia developing, but those who had cataract surgery had close to a 30 percent lower risk, which persisted beyond 10 years.

The authors suggest that both increased quantity and quality of light may be behind the significant effect of cataract surgery on dementia risk. In particular, blue light, which acts on photosensitive retinal ganglion cells, is associated with positive measures in cognitive function and Alzheimer’s disease; the researchers note that the yellow hue of cataracts blocks blue light, possibly speeding the onset of dementia by inhibiting mental stimulation.

Healthy heart, healthy brain?

Another potential explanation (or co-conspirator) is the role of vascular health; visual impairment can be accompanied by a reduction in mobility and activity, which contributes towards poor vascular health – a major risk factor for dementia onset and progression. The removal of cataracts and the recovery of vision may enable more active and healthy lifestyles, increasing vascular health and thus reducing dementia risk.

The researchers admit that further research is needed to determine the mechanism of action. But, whatever the reason, their work provides another reason why cataract surgery is so important – if further justification were ever needed.

Reference

OCT Under Pressure

Could optical coherence tomography ever replace current – highly invasive – intracranial pressure monitoring methods?

The pressure within the skull is a critically important factor in numerous conditions, including traumatic brain injuries and intracranial haemorrhage. But the only way to monitor intracranial pressure relies on a probe or catheter inserted into the intracranial compartment – an invasive procedure that brings the risk of further complications.

Looking for an alternative, researchers from Oslo University Hospital-Ullevål and the University of Oslo, Norway, have been exploring the predictive potential of optical coherence tomography (OCT). The team’s previous research showed that OCT could be used to estimate static intracranial pressure measurements. And their latest work provides evidence that OCT parameters can also predict elevated pulsatile intracranial pressure (1). Are we witnessing the birth of a noninvasive alternative? OCT manufacturers will likely be watching with a keen eye…

Reference
Light the Way

A guide to providing the right lighting for patients with sight loss

Lighting is an important element of visually impaired people’s surroundings – so you might be surprised at how many of these patients regularly deal with low light levels or uneven lighting that leaves areas of their homes in shadow. To support those patients, their families, and the professionals who work with or care for them, the Thomas Pocklington Trust – a UK-based charity dedicated to improving visually impaired people’s quality of life – has published a guide to “Lighting in and around the home” (1). In this comprehensive publication, Peter Hodgson, the Trust’s Lighting Consultant, and Peter Raynham, Professor of the Lit Environment at University College London, UK, outline the benefits of good lighting, explore the range of available lighting options, and examine best practices in lighting various rooms. The guide is available online as a free resource.

Reference

Life in Watercolor

Milton Yogi, Head of Cataract Division at Hospital Beneficência Portuguesa SP and Managing Director at IPEPO, Instituto da Visão in São Paulo, Brazil, saw an Instagram picture of Isabel Brazil, a cornea fellow who works at the Barra Eye Clinic and Oculistas Associados in Rio de Janeiro. He decided to paint the scene and contacted Brazil to present her with the finished piece.

Credit: Archives of Milton Yogi and Isabel Brazil.

Would you like your photo featured in Image of the Month? Send it to edit@theophthalmologist.com
The first, although unsuccessful, attempt to insert an intraocular implant after cataract removal was reported in Leipzig in 1795, when Johan Virgilius Casaamata inserted a glass lens into a patient’s eye. This was reported by a Swiss surgeon Rudolph Schiferli in his dissertation “On Cataract” in the following words: “It is known that through [cataract] operation the vision is not restored as it was before, because of experiencing the loss of the lens. Casaamata has made an attempt, to bring through the round of the cornea a distant lens. He claimed, however, that this glass lens could not serve as the patient’s natural lens, since it fell on the bottom of the eye. But there is another solution of attaining the loss of the lens, and this is the most common: glasses.”

Who was Casaamata and how did he get the idea?
Casaamata was born in 1741 in Quero, Venecia, and was the oculist at the Royal Court of Dresden. Augustus II The Strong, as well as his successor Frederick Augustus II were kings of Poland, who helped Dresden, located in Saxony, become one of the most pompous capitals in Europe.

Interestingly, we can find a description of the idea in Giacomo Casanova’s memoirs. Casanova was an Italian writer and adventurer from the Republic of Venice. His autobiography, Histoire de ma vie (Story of My Life), is regarded as one of the most authentic sources of the customs and norms of European social life during the 18th century. It contains an account of the first-known idea of intraocular lens implantation from an oculist named Felice Tadini.

During their meeting, which took place in Warsaw in 1766, Tadini presented a box containing highly polished tiny crystal lenses, which he claimed he could insert under the cornea to replace the eye’s natural lens.

Tadini was an Italian itinerant ophthalmologist living in the second half of the 18th century who performed eye operations in many places throughout Europe, documented by his advertisements in newspapers of the day (see Figure 1).

Casaamata’s attempt to implant an artificial lens could have been based on Tadini’s idea. It is certain that they did not know each other, albeit Casanova could have been the connection between them. It is not possible that Casaamata read Casanova’s memoirs, as they were published 20 years after his death, but there is another possible solution of this puzzle. The mother of Casanova, Gianetta Casanova, moved to Dresden in 1735, where she was a court actress and received a life pension, while Casanova’s younger brother, Giambattista, became the director of the Academy of Fine Arts in Dresden. Thus, Casanova visited his family in Dresden many times, and a meeting with the Court Eye Doctor could have occurred.

Andrzej Grzybowski is a Professor of Ophthalmology and Chair of Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland, and Head of Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznań, Poland.

He is also expert in the history of ophthalmology with over 100 peer-reviewed articles published in this area. He is a member of AAO Museum of Vision’s Program Committee, curator of ESCRSArchive, founder of history section at EVER. He is the president of the Polish Society for History and Philosophy of Medicine; Editor-in-Chief of Archives of History and Philosophy of Medicine, and Historia Ophthalmologica Internationalis, the only journal devoted solely to the history of ophthalmology.

See references online.
Meet Your Match

A summary of ophthalmology matches for 2021 US residencies, compared with previous years

Total match participants in 2021:

677

Positions offered and filled

<table>
<thead>
<tr>
<th>Year</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total positions offered</td>
<td>485</td>
<td>496</td>
<td>499</td>
</tr>
<tr>
<td>Total positions filled</td>
<td>484</td>
<td>495</td>
<td>498</td>
</tr>
</tbody>
</table>

2021 positions filled

- MD seniors: 38
- MD grads: 46
- DO seniors: 40
- DO grads: 6
- International: 6

Ranking results by matched applicants in 2021

- 1st choice: 38%
- 2nd choice: 19%
- 3rd choice: 10%
- 4th+ choice: 38%

Reference

In My View

Experts from across the world share a single strongly held opinion or key idea.

Closing the Distance

How does modest monovision work as a strategy for balancing near and far vision?

By Graham D. Barrett, ophthalmic surgeon at Lions Eye Institute, Sir Charles Gairdner Hospital, Perth, Australia

When choosing an intraocular lens in patients undergoing cataract surgery, we are often challenged with a patient’s desire to achieve adequate distance vision while maintaining some degree of spectacle independence for near vision. In patients who have expressed the desire for full spectacle independence, multifocal lenses are often considered. However, these options are not without their downsides, as patients may experience a higher rate of night vision disturbances, halos, or glare that reduces their satisfaction with the procedure.

As a result of these ongoing challenges, I began my pursuit of a consistent strategy for modest monovision as early as 2008 to provide a better balance between distance and near vision. I spent many years considering whether it would be feasible to design a custom IOL to specifically enhance this strategy – all of which led me to the concept of positive spherical aberration to extend the depth of focus of a monofocal IOL. Positive, rather than negative, spherical aberration is the key to a modest monofocal approach because it acts in a synergistic fashion with myopia, providing a greater overlap or blending between the distance and near sight on the respective eyes. Positive spherical aberration achieves consistent visual acuity and maintains a smoother transition between distance, intermediate, and near vision.

To make this concept a reality, I partnered with the R&D team at Rayner to research, develop, and bring to market a patented technology: an aspheric IOL with an optimized level of positive spherical aberration designed for use when monovision is sought in cataract surgery. The enhanced monofocal IOL we developed (RayOne EMV) provides an extended range of vision and is the only available IOL optimized for use with monovision. Results from early testing showed that this new lens can provide on average 2.25 D of extended depth of vision when using a 1 D monovision offset. In addition, the dominant eye is more forgiving of postoperative myopic outcomes compared with extended depth of focus IOLs based on negative asphericity or phase shift technology. As a result of these properties, the patient has clear binocular vision more often than would be possible with a standard monofocal IOL used in the same way, reducing the likelihood of patient complaints related to asthenopia and other effects associated with transitions.
between near and far vision.

The IOL is designed to optimize for monovision with an expectation of excellent binocular distance vision. In fact, a unique feature of RayOne EMV is a stretched focal point that allows the near eye to contribute to distance vision, even with a -1.0 D offset. From a patient perspective, this allows for more blended vision between the two eyes, which has been reflected in positive patient feedback.

The appearance of the IOL's optic, even under microscopic conditions, is much like that of other monofocal IOLs, with no zones or rings. The patented feature that sets it apart is enhanced spherical aberration in the center of the lens that gradually reduces at the periphery, allowing for an increased range of functional vision. The diffractive-free design reduces the likelihood of dysphotopsia, which should increase patient satisfaction. Compared with a standard monofocal IOL, RayOne EMV provides better intermediate vision, with 1.25 D of extended range of vision on average.

The level of spectacle independence sits between traditional monofocal IOLs and trifocal IOLs, depending on how the IOL is used. For instance, if this IOL is used with no monovision offset, it offers spectacle independence similar to that provided by available extended depth of focus IOLs. If a surgeon calculates the IOL power with a -1.5 D or more offset in one eye, the ability of the enhanced monofocal to achieve spectacle independence competes with multifocal IOLs that usually have the trade-off of rings or zones. To date, RayOne EMV has not been associated with unwanted effects, such as glare or halos.

When using a monovision approach, ophthalmologists should aim for as close to emmetropia as possible in the distance eye. For the near eye, the target should be determined based on the patient’s previous experience with monovision. Importantly, it is critical to remember that post-operative refraction of up to -0.5 D will still provide very good distance acuity. Though the lens is optimized for monovision, it can also be used with a target of emmetropia in both eyes, providing excellent distance and intermediate vision bilaterally.

The RayOne EMV IOL could be an attractive choice for patients wishing to achieve excellent distance vision while maintaining good intermediate vision and some spectacle independence with near vision. Thanks to the optical design, it is more forgiving in terms of missed target refraction and complements the natural positive spherical aberration of most eyes, which naturally increases the depth of focus. Unlike multifocal IOLs, it is designed to accommodate a wider range of pupil conditions, including variations in decentration and tilt.

That said, I might not consider any aspheric lens in patients with extensive decentration or zonulopathy. I also might exclude its use in patients with pseudoexfoliation syndrome as this could cause late decentration. Likewise, the unique spherical properties of RayOne EMV might further exacerbate pre-existing spherical aberration in patients with previous radial keratotomy.

We are increasingly recognizing the value of better presbyopia correction, as individuals are more likely to engage with screens at near focus in their daily work and leisure time. Instead of focusing on excellent far vision only (at the expense of near vision), I now prefer modest monovision as an appropriate strategy in many of my patients, with a target of about -1.25 D in the more myopic eye. In fact, modest monovision is a popular choice for many surgeons around the world – a third of surgeons on a regular basis according to some estimates. In my practice, I offer it to all patients who achieve 6/9 or better in the first eye, and more than 70 percent select this option rather than targeting emmetropia in both eyes.

Ultimately, I am enthusiastic about modest monovision based on the levels of patient satisfaction I have seen in my own practice. In previous published studies, including my own, the overall satisfaction rate is well over 90 percent because the technique does not compromise the quality of vision. Furthermore, unlike diffractive multifocal and extended depth of focus IOLs, modest monovision is not associated with dysphotopsia, halos, or glare that can further impact patient satisfaction.

In my opinion, this new lens represents a next-generation, premium IOL that offers excellent distance vision while maintaining an extended range of intermediate and near vision and offering significantly more spectacle independence than is seen with standard aspheric monofocal IOLs. This lens offers surgeons a new way to approach modest monovision, and I would encourage you to evaluate the technology in your own practice.

“I now prefer modest monovision as an appropriate strategy in many of my patients, with a target of about -1.25 D in the more myopic eye.”
The leadership team of ARVO give us an insight into how the organization has grown in challenging times

A rundown of the leadership challenges and the exciting developments made by ARVO – from Stephen Pflugfelder, Maureen McCall, Irene Gottlob, and Justine Smith.

By Geoffrey Potjewyd
Stephen Pflugfelder is Professor of Ophthalmology at Baylor College of Medicine, and the ARVO Cornea Section Trustee and Immediate Past President.

Maureen McCall is Professor of Ophthalmology and Visual Sciences at the University of Louisville, and the ARVO Visual Neuroscience Trustee and Vice President.

Irene Gottlob is a Cooper University Hospitals and Neurological Institute Ophthalmologist, and a gold fellow of ARVO.

Justine Smith is Matthew Flinders Distinguished Professor at Flinders University, and ARVO Executive Vice-President.
STEPHEN PFLUGFELDER

I'm a clinician scientist and a cornea specialist – so I obviously specialize in the front part of the eye! But I've also run a fundamental research lab for about three decades or more, which has allowed me to investigate my keen interest in diseases of the cornea and the ocular surface, primarily dry eye. That's where most of my research has been focused.

Moving onto my ARVO role, I was the president and I've been involved in ARVO for going on four decades now. During the time that I've been involved with the organization, I was elected to be the trustee for the cornea section, which is a five year term, and the ARVO president is selected from the pool of trustees – from which I was elected to serve as president for the one year term. This term ended last May, so currently I'm the immediate past president and that position is really to oversee the Board of Trustees activities. I would help organize and run the meetings, and I would be probably the principal liaison with the ARVO administration, which is based near Bethesda, Maryland, USA.

CHALLENGING TIMES

Well, as you might expect, a lot of challenges over the past couple years have been pandemic related. I was president elect during the first year of the pandemic, so I was involved in the trying to plan the ARVO meeting of that year – in the end we had a very small meeting with almost nothing. People could submit abstracts, but there were no sessions. But then I was involved in planning the first virtual meeting in 2021, which was a learning experience for the organization, and for the Board of Trustees and me. I was in charge of the opening and closing sessions and to pick the major keynote speakers, and the change in format meant that everything had to be recorded ahead of time, for the time when it was going to be available for the meeting. So we had to learn quite a bit about virtual communication platforms, for which I am thankful that ARVO did most of that work, but we provided the necessary guidance and feedback about how to do that and gave a great meeting given the circumstances.

In terms of moving forwards, the pandemic has really let the genie out of the bottle in terms of hybrid meetings and virtual formats to these events. Now that we are proficient in virtual delivery of the meetings we can expand our reach – particularly in an international organization like ARVO, we could pretty much cover the globe. It also brings new opportunities, whereas before our meetings have always favored the North American attendees, with Vancouver, Canada being the first non-USA venue, now we can have more attendees and they don’t have to deal with jetlag! As technology continues to improve, this format where we can include as many people as possible will probably only continue to grow – of course we would all like to get back to regular in person meetings also!

LEADING ARVO: ADAPTATION AND ADVICE

Over the years, ARVO have developed a very well defined board and governing structure, and they have an outstanding full time administrative staff, and an executive director. So really, there weren’t that many changes in terms of the leadership or the governing of ARVO over that period, or during the whole period of my presidency.

ARVO is a somewhat unique organization, in that it’s international, and it also includes clinicians, some of whom are pure clinicians that don’t do much research, as well as very technical bench researchers – and, of course, everything in between. So you have to mesh that together in a meeting, which can sometimes create
challenges. ARVO has to work to develop policies and programs that can satisfy this diverse membership, and out of all the organizations that I’ve been part of, it is probably the most diverse. Obviously, we have to be open to the needs of all of the constituents and we try to take their suggestions and harmonize the meeting.

Ultimately, this collaboration between clinicians and researchers, and the people who wear both hats, are the reason that ophthalmic therapies get to helping the actual patients. I think both sides really enjoy that interplay too – for the bench researchers, they’re looking for the relevance of their work, and, for the most part, translation to the clinical arena. This also helps them with funding agencies, patient support groups, etc. If they’re going to fund things, they want to see how it’s going to translate. The fundamental researchers have an opportunity at the meeting to attend the clinical sessions, and to get the perspective right from the clinical side as to what the real needs are.

ARVO IN MY CAREER

ARVO has had a huge role in my career. I got involved in ARVO when I was still in training, and had that early opportunity to realize the value of the meeting, not only as an educational experience, but as forum for communication and exchange. So from early on I’ve been getting involved, and I’ve tried to keep on getting involved ever since. I’ve always tried to present in the meeting every year, to participate in symposia, and be on committees – really taking in the full benefits of these meetings and the new and old experiences that come with them. The real benefit to me and my career was that people got to know who I was, which is important, alongside being asked to participate in studies and gaining recognition for my work. Of course, this also helps with getting it published and getting grant support. As I move forward in my career and become a little more senior, it’s been a great opportunity to try to help the next generation of scientists, to mentor them and provide advice.

I’d say to anyone thinking of joining ARVO, if they if they really want to get involved in research, whether that’s clinical based research or fundamental research, then it’s essential for them to be a member and an active participant in ARVO.
MAUREEN MCCALL

I’m a professor in the Department of Ophthalmology and Visual Sciences here at the University of Louisville, USA. I have a joint appointment in a basic science department called Anatomical Sciences and Neurobiology, and Psychological and Brain Sciences. I am also the Vice Chair for research in the Department of Ophthalmology and I’ve held that position for about a year and a half. Finally, I’ve been the Kentucky Lions Eye Centre research Endowed Chair for several years.

ARVO CHALLENGES AND GROWTH

COVID-19 has been the challenge of recent times. When I first started on the board we had meetings in person, with discussions around a large round table where you got to know people a lot better, and you formed friendships that last for forever – that’s what I miss. The challenge that we face as we’ve added new trustees is that I don’t feel like I’ve had the opportunity to get to know them as well as I could have – and that doesn’t take away from our basic focus, in terms of trying to make sure that ARVO moves forward in the best way possible, but I do miss that human contact with these people. The fact is that the conversations that occur the ARVO meetings outside of the formal setting, in the informal breaks or the meals, is tremendous and can lead to collaborations and new ideas.

You always want to represent your constituency, and visual neuroscience is a smaller part of ARVO than many of the others – for example, glaucoma is huge, but you would expect that. So whenever I’m talking about issues that have to do with programming, it’s mainly me trying to make sure that we continue to be represented, because our basic science is important and it’s also an important part of being able to move towards translation. I feel like that’s my responsibility as trustee.

I’m also the liaison to the members in training, so I’m always looking out for what ARVO is doing and how it will impact our young members. Our young members will become our old members, therefore we need to continue to recruit our new people to make them feel welcome, otherwise ARVO loses vitality. That’s been a big goal for me, is to make sure that they are well represented, and that they get their moment in the sun.

STEERING IN THE RIGHT DIRECTION

ARVO is an organization that is constantly striving to provide more for its members and they have been very forward thinking in terms of diversity, and trying to address issues of diversity. This is from well before the tide of the pandemic swept over us and it is still continuing now. There’s a Women’s Leadership Development Program, and a Women in Eye and Vision Research (WEAVR) program that make sure that women are represented. Then there’s a global member mentorship program, so people in third world countries can be mentored by more established scientists. There’s science communication training fellowships that are available, and there’s a new high school vision program. On top of these, ARVO has also been trying to do a lot of online learning programs, to ensure that people who might not have access to a particular topic can still get intensive online training – and this a resource that’s developed by ARVO using our own members. ARVO even train you on how to represent diversity in the right way – being careful to not step on anybody’s toes, but at the same time to help to recognize that we need to be a diverse society, because the best ideas come from when we cross pollinate. There’s been a lot of discussion about how to represent and determine the diversity of our membership, because even that is an issue in itself and we had not tracked it before. We are starting to try in a very sensitive way. So all of these things, are huge milestones that the society has taken on and is in various stages of accomplishment.

“ARVO IS AN ORGANIZATION THAT IS CONSTANTLY STRIVING TO PROVIDE MORE FOR ITS MEMBERS AND THEY HAVE BEEN VERY FORWARD THINKING IN TERMS OF DIVERSITY.”
ADVICE FOR FUTURE LEADERS
If I could give advice to someone who is going to lead an organization like ARVO, the key part would be to listen carefully at the beginning. I was pretty naive about how these societies worked and I think that I learned a lot by listening and listening it to the way that the conversation was framed, how the discussion was allowed to move forward with some gentle nudging, if something was getting off track, and generally learning the process. You also have to remember that not all trustees are the same, and you can have different interests and priorities – if you have something you are passionate about then you can make a huge impact. I didn’t know how to do that, but it’s a learning curve and you just have to get stuck in and learn as you go.

OVERCOMING THE PANDEMIC
I don’t want to sound like a broken record when it comes to how well ARVO dealt with the challenges of the pandemic, but it was really amazing to see how the staff and leadership pivoted to address the issues as they occurred (and reoccurred). I attended several meetings from different societies at the very beginning of the pandemic, and they were not anywhere close to as well planned, and executed as ARVO. There was very little time to prepare for the first online meeting, yet in most respects it was seamless. There weren’t dropped streaming lines and, or any of that kind of thing – whereas we probably have all experienced that happening with a lot of other meetings that had gone to online at that time. So I can’t say enough about the staff and the way that they carefully screened vendors and talked to the trustees about what we thought we needed. Now, as we transition to what we hope is a hybrid meeting, they’ve also taken into account discussions with the trustees to make sure that the online experience continues to be a rich one.

The other thing that this does is really kind of cool in some respects is that it really opens the meeting up to people who might not have the financial ability to travel. People may have some other responsibility in their home country or city, where they really can’t make it to the meeting that year. So it’s nice, because now you get to reach potentially a much broader audience and more people than ever can benefit from the experience. ARVO has really thought it through as well – they’ve learned from the pandemic, and they’re going to continue to use this as a tool to make the meeting more accessible.

SCREEN TIME
Switching to online meetings has changed how we communicate. Luckily we get to keep face to face communication, which is screen to screen, of course – so you still get all of those important cues that you lose when you’re on just the phone with somebody. I think that offshoot of the pandemic, is really a positive thing. Even when one of my lab members has to stay home, for a familial kind of thing or whatever, and we need to have meeting, we can still move forward with that meeting. They don’t lose out, we don’t lose out – which is really important. This is the same with collaborators, you can talk to them more frequently now we’ve embraced the technology rather than trying to arrange meetings in person. With those smaller meetings it avoids the issues of the online Board of Trustees meetings online, where you have so many people that all you see are little squares. Yes, you can have someone highlighted when they’re talking, but it’s so much more difficult to see what’s going on compared to being in the room. But other than that, I think we’ve learned a lot and we do have some very positive things that are coming out of this.

Of course, all of us are really excited about the idea that we might actually be together again, in the April ARVO meeting. I keep looking at the New York Times to see how we’re doing in Kentucky, and in the US, and whenever I see the curve starting to flatten out I get really excited about the event happening.

ARVO IN YOUR CAREER
I certainly enjoy the translational side of the research. It’s so rewarding, because you know that if it’s a successful or efficacious therapy, then there is some likelihood that it will be applied to the clinic. I got involved with ARVO when I was a graduate student, and I was not doing translational work, and translational work wasn’t even a term that anybody talked about. I was at the University of Maryland in what’s called a visual psychophysics lab, where we tested humans and asked questions about what they could and could not perceive. During getting a master’s degree from there, I became very interested in the electrophysiology side of neuroscience, and I went off to do a PhD in neurobiology at the State University of New York and Albany. This is where I got to look at issues of plasticity and envision responses in the visual cortex, and kicked off my involvement with ARVO. Although I’ve had a few lapses, where a lab that I
was in more interested in the neuroscience part of things, I’ve always come back to ARVO as a home.

I belong to the section of ARVO that’s called Visual neuroscience. So it’s always about neuroscience, but it and the visual neuroscience section is broad. It contains mostly basic science about retina structure and function. But there are also a lot of people like me branching out and using our skills in assessing what’s happening at the level of the retina and the output of the retina to translational medicine, so that better predictions can be made when a therapy seems to work at the gross level. ARVO is a very solid home for people who do visual neuroscience, and I’ve evolved along with my colleagues so that the visual neuroscience is not just basic science, but also translational science and reaching out to other parts of the ARVO family, for collaborations and things like that.

Career Highlights

Running the lab is a challenge, but very rewarding. Going to graduate school doesn’t set you up for HR – yet when you keep progressing in science you become someone’s boss! Managing expectations and different personalities is a big part of it. Everybody who comes in, has a really good hope that they’re things are going to work out beautifully – of course, it often won’t. Everybody needs a different level and a different style of mentoring, and the challenge is to how to work with people to move them toward their greatest potential. Sometimes it takes learning when that’s not working, and how to make the decision that this role is not for them, and that they would be more fulfilled in a different role.

I think you just have to because it’s easy to just go along and, and go along, and hope that things will change in some way, even when you aren’t changing. It’s like, what Einstein said, “insanity is doing the same thing over and over again, and expecting a different result.”

Irene Gottlob

Up until very recently I have worked at the University of Leicester in the UK, but have just recently moved from to the USA and started my work at Cooper University Hospital in New Jersey only few months ago. At the University of Leicester I was chair of ophthalmology for more than 20 years, with my work being split to 50:50 clinical work and academic work. Clinically, my subspecialty fields are neuro-ophthalmology and pediatric ophthalmology, whereas my academic work consisted mainly of research and postgraduate teaching. My research group focuses on nystagmus, ocular motility, neuro-ophthalmological diseases, and pediatric eye diseases. The focus of my pediatric research is amblyopia and OCT in young children.

There have been so many challenges over the last couple of years – believe it or not, not all of them have been pandemic related! Personally, although ARVO is an international organization, by being one of few non-US members was a little difficult at the beginning. This was mainly due to the US members being more familiar with the structures, the financial aspects, and also with each other. But this was a learning curve that was quickly overcome – and this was the same case when getting familiar with everyone involved.

ARVO Leadership Challenges

But, of course, the most significant change was definitively introduced by the pandemic. Through this we saw a big shift in research focus, especially with the advent of artificial intelligence – that is now a major research theme. There has also been an increase in multidisciplinary meetings and groups that will ultimately improve the scope and translation of research.

One of the major things I’ve learned from being involved in ARVO (such a large research-oriented organization) is that it is very important to be flexible and to adapt to any changes in the research emphasis, and to support interdisciplinary sessions. More generic advice for leading any organization, but it still needs to be said, is to listen to all the different members and to be very inclusive. ARVO is already working very intensely on diversity and inclusion, with emphasis on equal opportunities and by having specific meetings for young investigators. For new ARVO members the main meetings can be quite intimidating, and I think it is crucial that we continuously address this so that we don’t lose talented ophthalmologists and researchers.

Obviously the activities in our pandemic landscape have all been virtual – hopefully this will be changing very soon. But this has naturally taken away the more informal interactions that go hand in hand with conferences and meetings. Casual meetings have been very important for problem solving or ideas, for example for new symposia, etc. Fortunately for all of our members, the ARVO management
has adapted exceptionally well with the challenges and coordinated extremely well-organized meetings for the leaders and for the entire ARVO meeting – a shining example of how organizations can deal with the challenges of the last couple of years.

PROFESSIONAL PANDEMIC CHALLENGES
COVID-19 has had a significantly changed my professional life. At the beginning of the pandemic patients could only be contacted via telephone appointments, later only few patients were allowed per session in the UK National Health Service as social distancing was required in waiting areas. A large backlog of patients and routine surgeries built up – not good for the patients or for me. On the research side my ongoing studies were put on hold and patients had to discontinue participation. The pandemic had a large detrimental influence on my research students, as they mostly were involved in clinical studies. But we had to find alternatives and adapt as best we could. Travel has been a big change too. Before the pandemic I travelled to many meetings every year, which has been significantly reduced now. I am optimistic and believe that the virus will get less pathogenic, more like the flu. Things will get better, and work and meetings will return to being much closer to what was normal two years ago. In the long-term, I think people will work more from home and communicate electronically more and more – more flexibility and a more hybrid approach to work seems to be one of the major takeaways from the pandemic.

ARVO AND YOUR CAREER
ARVO had a very important role in my career. When I attended ARVO for the first time, as a first-year resident, the meeting was an eye opener – just the access it gave me to all the ongoing research. It was fantastic to be able to directly speak to the authors whose papers I had read and poster sessions were a fantastic opportunity for meeting people in person. Over the years ARVO meetings gave me the opportunity for important collaborations and to make many lifelong friends all over the world. After each ARVO meeting I come home with new research ideas – another major advantage of the diversity in research and translational studies that are presented at the meeting.

If I could offer any advice to people who have only just, or are thinking of, joining ARVO, is to interact with more established researchers and not to be shy to ask for advice, for collaboration or even asking to join their group.

CAREER HIGHLIGHTS
My proudest moment in my career, from a personal level, is the interdisciplinary group I established in Leicester, where we involved many amazing students in research in a very collaborative atmosphere. On a research level, I think the detection of the FRMD7 gene for idiopathic nystagmus, and the research on hand-held OCT in young children.

One of the biggest challenges I’ve felt over my career is being very determined to be taken seriously both as a woman and often as a newcomer, as I worked in five different countries with different medical systems. To start over without having many connections was often a challenge. However, this was also an opportunity as it always opened new horizons, helped me learn new things, meet many people and make friends.

ADVICE AND INSPIRATION
Advice that I’d give my younger self is that it’s important to enjoy what you are doing, especially if you are working long hours. Being very good in your field is an important factor to take pleasure in your work. I would advise to take all the time for your clinical and research training you need to become top in your field and to aim to work in top groups and teaching institutions.

My early career was inspired by Dr Robert Reinecke during my fellowship at Wills Eye Hospital. He was highly competent and I also admired him for never giving up. Today I am inspired by my students and residents.
I am the ARVO Executive Vice-President (EVP), and Matthew Flinders Distinguished Professor, at Flinders University, Australia. EVP is elected by the ARVO membership. The key responsibilities include: Chair of the Annual Meeting Programming Committee and oversight of scientific aspects of the meeting (as well as other ARVO meetings, such as ARVO-Asia); and ARVO Board Liaison to ARVO Executive Director and staff.

LEADERSHIP ADVICE, CHALLENGES AND CHANGING DIRECTIONS
One of the leadership challenges is actually geographical – I am based outside the US (in Australia), and I am the first ARVO EVP who did not live in the US. You could not have been in this position and not lived in the US 20 years ago. However, with so many options for global connectivity – for meetings as well as logistical matters – this has worked well, and it has been a good experience for the organization.

The direction of ARVO has continued to evolve with membership needs. ARVO holds a formal strategic planning process approximately every five years to ensure the direction is on the right course for the membership, and leadership constantly turns over, as per our bylaws. The EVP serves a five year term – the Presidents and Vice-Presidents serve a one-year term (and the President spends a year in the position of President-Elect and another year in the position of past President).

Important advice for anyone leading such a large research-oriented organization is to keep the communication channels open. ARVO uses the electronic community, ARVOConnect, as a key mechanism for allowing all members to communicate with each other, and with the ARVO Board.

PANDEMIC DIARIES
Due to the pandemic, like other organizations, activities have moved into the virtual environment – ARVO 2021 was a fully virtual meeting. ARVO 2022 will include an in-person component, held in Denver, along with virtual components that should appeal to all and hopefully increase attendance (even if not numbers in the building). COVID-19 has also caused a shift in my working landscape. As an ophthalmologist, I used tele-health to manage some patient visits. My specialty is uveitis or inflammatory eye disease. The American Academy of Ophthalmology ran a series of articles about working in different subspecialties during the pandemic – I wrote the piece on managing uveitis, along with co-author Timothy Lai (Based at Chinese University of Hong Kong).

Although the pandemic hasn’t been a good experience for anyone, there are some aspects which we should take with us as we move back to a semblance of normality. The eye and vision community has learned how to capitalize on electronic communication, which will ultimately open our doors to more people than ever before. If we are to ever have another pandemic, the world has now learned pandemic strategy, which hopefully will be applied and make any future pandemics, as well as for the present.

ARVO IN YOUR CAREER AND COLLABORATIONS
ARVO has provided the main route to establish my collaborations. The Annual Meeting, other ARVO events, and the journals have been and continue to be my major resources of information in the eye and vision sphere. It has also been where I’ve progressed my leadership skills, as I have learned leadership on-the-job at ARVO.

I would advise anyone who is thinking of joining to get on the website and see all that ARVO has to offer – there is a lot! And if I had to offer advice to someone early in their career, or even back to myself as I was starting, it’s not to expect your career to follow a straight path; some of the most exciting opportunities come during the detours.

The proudest moment of my career so far is leading ARVO as its President between 2013 to 2014. In terms of challenges or obstacles – it’s been smooth sailing for me. There really have not been obstacles in my way, which I think is a real testament to ARVO. The leadership is shared, and the organization and its Officers are extremely well supported by an exceptional staff.

INSPIRATION
It’s also important to have role models and inspiration. For me, this is my mother: one of a small number women to train as a medical doctor in New Zealand in the 1960s. She specialized in pathology, and even today, she volunteers at the university in various capacities.

“I WOULD ADVISE ANYONE WHO IS THINKING OF JOINING TO GET ON THE WEBSITE AND SEE ALL THAT ARVO HAS TO OFFER – THERE IS A LOT!”
Watch an esteemed panel of ocular surface experts – Cynthia Matossian, Eric Donnenfeld, Jai Parekh and Christopher Starr – discuss steps practices can take to effectively manage patients’ dry eye disease. The discussion includes the importance of assessing the ocular surface, pre-operative treatment algorithms, increasing patient eye drop compliance, managing MGD and Blepharitis, affordability of treatments, and more.
The Template for Transplantation

The answer to a growing demand for corneal tissue may be to grow more corneal tissue

By Che J. Connon

I’ll start with a horrific statistic: one in 70 patients globally who would benefit from a corneal transplant will actually receive one – and the lack of available tissue is a major reason why. Even in locations around the world that have good eye bank management, the supply is only just keeping up with demand. Trying to solve this significant problem and unmet need has been a major driving force and inspiration for me and my colleagues in our work on tissue engineering.

To make progress, we’ve had to really understand the cornea to its core – how does it actually work? And that’s meant increasing our fundamental understanding of corneal biology. For example, uncovering how cells interact with their surrounding resident extracellular matrix (ECM) to inform our tissue engineering approaches. We’ve also needed to consider the tissue as a whole – what is the spatial orientation of cells, what is their specific phenotype?

Bioinspiration not perspiration

What we now work on is a bioinspired approach to growing cornea, using the concept of tissue templating. Although bioinspired is a fashionable word, it basically means that you’re taking the tissue and building from the bottom up. As opposed to the more conventional approach, where you generate a scaffold, often a biopolymer or synthetic polymer, with specific stiffness and porosity, and then add the cells to it. The common flaw in this latter approach is that you’ve already decided on the properties of the scaffold. But we don’t know how to make the scaffold as well as the cells do and, right now, we definitely can’t make it with all the same attributes – it’s extremely complex with different growth factors, it responds physically to different tensile loads, and so on. This should come as no surprise, as the cornea has developed over many millennia.

The importance of the scaffold in which transplanted cells are being introduced to humans is something that can be underestimated to drastic effects – you only have to look at the tracheal implants’ disaster, where patient stem cells were seeded to plastic trachea...

Inside the body, cells know what to do, they’re given instructions, and they can create a cornea during development. And the corneal tissue that the cells are able to generate has all the different features that it requires – from types of ECM to the specific arrangement within the ECM and the cells that reside there.

In tissue templating, we need to identify the right instructions – the specific biochemical and biomechanical signals that direct cells to grow and produce ECM with the correct alignment, the correct structure and the correct composition. If we get it right, we can ultimately create the tissue outside the body. Using tissue templating, we can grow cornea, skin, and even muscle into hierarchical structures – something that is beyond the traditional engineering capabilities that exist today. Creating a cornea with collagen fibers of a certain diameter, density, alignment that form collagen bundles that stack in the appropriate manner (an extremely important property of functioning cornea) is beyond the limitations of a top-down approach with scaffolds.

Put even more simply, you can imagine the cells acting like mini 3D bioprinters, producing the tissue and extruding the scaffold themselves. We basically say to the cells, “You know what you’re doing, so we’re just going to let you get on with it – with some guidance.”

Speaking of 3D bioprinting...

Initially, we did look at 3D bioprinting to create the necessary...
Practice Fundamental: Cornea & OSD

Che J Connon
spatial deposition of cells for the growth of a cornea. We were one of the early adopters of this technology in the UK back in 2018, and purchased a CellInk 3D bioprinter. After getting the bioink right – my major focus – we managed to print the corneal tissue with corneal stroma cells (see Figure 1).

We had the aforementioned advantages of knowing how to handle corneal cells and extensive knowledge of the ECM, which allowed us to publish a nice paper detailing 3D bioprinted corneal tissue – a good first step in our journey.

On paper at least, 3D bioprinting seems like the ideal solution to corneal tissue generation – with precise deposition of cells in the correct surrounding ECM (a bioink) you could form a fully functional tissue. However, a major issue is the resolution of the structures being printed whilst maintaining cell viability and avoiding viscosity issues. Today’s printers can hit a resolution of maybe 20–50 µm – but that’s a long way off the intricacy of real corneal tissue. And that’s why it’s not a big part of our plans moving forward. Presumably, the technology will one day reach a point where it can be used for this purpose, and it will no doubt continue to develop as a useful tool for cell-free devices like contact lenses…

Running a lab – and a company
Serendipitously, the publicity gained from our 3D bioprinting paper generated international interest in our lab and the work that we do. It also waved a flag at investors, who wanted to know how real it is and what we can actually do with it – ultimately, this helped me and co-founder Ricardo Gouveia acquire the initial investment for 3D Bio-Tissues – a spinout from Newcastle University, UK.

The corneal tissue engineering lab is still running at the university, with PhD students exploring different aspects – some are even sponsored by 3D Bio-Tissues.

One of the major differences going from academia into the industrial space is the need to scale up – if we truly want to meet our goal of addressing corneal tissue availability, we’ll need to create high numbers of corneas in the same predictable fashion with all the same attributes.

I’ve had to separate my University and commercial work, partly for intellectual property (IP) reasons and partly to avoid any blurred lines between ownership and my role at the University. This separation is more challenging than you might expect – you have to be regimented, strict, and fair with IP (what is created in service of the University is the University’s IP, and vice versa). Thankfully, I find the interplay and movement between academia and industry to be both rewarding and exciting. After all, getting technology and discoveries out into the real world is why I started doing research in the first place.

Given my industry experience – I lived through the process, the pitfalls, the opportunities, the good and the bad – I’ve been able to take on the role of director of business development for the faculty of Medical Sciences at Newcastle University. I get to oversee the IP opportunity committee and deal with spin outs, but I’m also there to encourage academics (young and old – whatever their career stage) to think about opportunities to commercialize their work – offering my oversight whilst they work with companies or deal with IP.

The cornea transplant of tomorrow
Looking further ahead, a professor of microelectronics and I also share a PhD student who is developing a bionic cornea. Put simply, we want to embed a microchip within the tissue. First, we have to determine how to power the microchip and how to send and receive signals. Typically, a major problem when integrating microchips into tissue is rejection or integration – but as the cornea is an immune privileged site, partly due to the absence of blood vessels, pre-implantation of an electronic device into an immune-tolerated tissue will side step current issues with bio-electronic integration. Once our lab-grown cornea is indiscernible from the real thing – and we are 90 percent there – then including other structures – like a microchip – doesn’t seem so much like science fiction.

If we can reach our goal, the big question becomes: What do we want the electronics to do? For example, it would be relatively easy to monitor intraocular pressure (IOP). But what about including an internally facing camera to measure blood flow – or an external camera enables vision on different wavelengths… Now we are back in the realm of science fiction, but the technology is almost within grasp.

But before we start enhancing vision, we need to save it. We are focused on replacing human corneal donor tissue with our approach – and we are getting much closer to that bold goal.

Che J. Connon, Director of Business Development and Professor of Tissue Engineering, Newcastle University, Newcastle upon Tyne, UK, and founder of 3D Bio-Tissues.

Reference
We bring you the greatest stories by working with the brightest and best in ophthalmology. Providing a platform for ophthalmologists and vision scientists across all subspecialties, we are fully focused on celebrating achievements across the whole field.

Visit theophthalmologist.com/register

Registration is always free and includes:
- access to all of our articles, including online exclusives and our issue archive
- a regular print or digital magazine (or both—your choice)
- a weekly newsletter on the latest ophthalmic practice and research innovations
Varied Views on VUITY

What do refractive experts think about the recently approved presbyopia eye drops?

In late October 2021, following two Phase III clinical studies – GEMINI 1 and GEMINI 2 (1, 2) – that showed improvement in intermediate vision and no impact on distance vision of presbyopic patients for up to six hours after instillation, the FDA approved the first-ever eye drop developed to treat presbyopia: pilocarpine HCl ophthalmic solution 1.25%, better known as VUITY (3).

In December 2021, the manufacturer of VUITY, Allergan, an AbbVie company, announced that the eye drop was available – if prescribed – in pharmacies across the US.

Have US-based specialists decided to prescribe it to their patients? What have their impressions and experiences been like, and – more importantly – how have their patients reacted? What do their colleagues from other parts of the world think – are they eagerly awaiting approvals in their countries or regions and will they decide to make use of VUITY when available – or are they ambivalent?

We invited world renowned specialists to share their perspectives.

Is the approval of VUITY a big ophthalmology milestone?

Arthur Cummings: I think it is! For the first time, the general population will get to hear that you can improve reading vision without the use of reading glasses. This will drive patients seeking the new miracle drop to ophthalmologists and optometrists. It will work for some, and they will return to the practice one day for surgical solutions when the drops are no longer sufficient, or they are tired of using them. Those it doesn’t not work for, will learn about surgical alternatives such as blended vision laser vision correction or refractive lens exchange and custom lens replacement with trifocal and EDoF IOLs. Bottom line: VUITY and similar drops are going to create awareness of presbyopia like nothing has done before.

David Goldman: In a sense, this is a very big milestone. In the past we’ve only had invasive techniques to combat presbyopia such as specialized contact lenses or corneal inlays. Now, we have the opportunity to correct presbyopia in a pharmacologic fashion, but with a reversible application.

Kjell Gunnar Gundersen: In my opinion, it is not a milestone, and the approval means close to nothing
Guy Kezirian: Presbyopia treatments represent a new market space that will expand rapidly. It is important to view this new market correctly. Applying “market share” mentality to this area is misguided. By market share mentality I mean looking at the market as a fixed size and competing over which product or approach captures the largest share at the expense of others, similar to cutting a fixed pie and apportioning it among hungry diners. This approach does not apply to the presby market. It is a “market growth” opportunity where new entries will grow the market and speed adoption, benefitting all participants. As they enter the market, the pie will grow.

Robert Osher: In my opinion, the approval of VUITY is not a milestone. The concept of pilocarpine as a biotic agent has been known for a long time. In lower concentrations we used it to treat dysphotopsia after LASIK or diffractive IOL implantation. Latest models of pinhole implants like Karma or on IOL base like IC-8 or the Morchel add-on show good results. Still – subjectively – patients do complain about loss of visual field even if it is not measurable. Also, German driving law does not allow patients after miotic or mydriatic drops to operate a car at night. Nevertheless, as soon as VUITY makes it across the Atlantic, it will be an option to help patients cope with presbyopia and cover for residual refractive errors.

Florian Kretz: The approval of a reversible pharmaceutical treatment of presbyopia is very promising. Patients in their forties have always sought options beyond the age-defining reading glasses to restore their near vision and maintain their youthful active lifestyle. With this first, as well as the expected future approvals, we have the potential to help these patients and address their visual needs and desires.

Ray Radford: I don’t see it as anything new, but rather as using old knowledge for a purely marketing exercise to sell a product. After all, the pinhole effect has been known for so long!

Vance Thompson: I believe the approval of VUITY is huge for ophthalmology, optometry, eyecare in general, and mankind. Presbyopes are notorious for not having had their eyes examined for years. And then when near leaves them, many just go get a pair of reading glasses and still do not get their eyes examined. Now that they are hearing about VUITY drops, they are calling us and we are suggesting a quality eye exam, not unlike a refractive consult, to make sure their eyes are healthy, they are good candidates for presbyopia drops, and we are planting the seed about surgical options to help their presbyopia journey if the drops do not serve all their needs in the near or long term. These drops are great for presbyopes, but also our profession.

Blake Williamson: This approval has created a new category, putting presbyopia on the map. Right now, many people outside of ophthalmology don’t consider dysfunctional lens syndrome or presbyopia a disease, but through direct consumer marketing, the general public will find out what presbyopia is. It’s going to be seen for what it is: a disease of aging
and unconditional loss of vision.

To those who say that “it’s just pilocarpine,” I say that the vehicle used in the drop changes into a more physiological PH than in other solutions within a couple of minutes, resulting in better penetration of the cornea and less discomfort for the patient. This formulation offers great bioavailability.

Have you prescribed VUITY to any of your patients or will you in the future?

Arthur Cummings: Unfortunately, VUITY is not available in Ireland yet. When it does receive approval, I will be making it available to my patients and prospective patients. I don’t know of a better educational tool for presbyopes to illustrate the benefits of being able to see up close without reaching for glasses first. If you want to grow your refractive practice, you need to offer VUITY or similar drops when they are approved.

David Goldman: I have already begun prescribing VUITY for patients. Many patients specifically called in wanting to try it after they heard about it in the news.

Kjell Gunnar Gundersen: It is not yet available in Norway, where I practice, but I have no plans to prescribe it to my patients when it is approved here.

Florian Kretz: VUITY is another option we will have available. I would love the drug to be labelled also for residual refractive errors.
Vance Thompson: We are getting lots of phone calls about the VUITY drop. We are asking patients who their eye care provider is and when they had their last exam. We are emphasizing the importance of an exam first. If possible, we are coordinating their care to see the doctor they have trusted for years. We are also asking them about their distance vision and their night time image quality. If they are blurry at a distance and their night time image vision quality is reduced, we suggest they see us, since they may have a surgical issue already. If they have a great exam and refractive consult and would like the drops, we prescribe them. We are handling different situations differently.

Blake Williamson: I used the drops for a patient in the same week they were commercially available in the US, and have used them for several patients since then. It is a fantastic tool for patients in their 40s and 50s with presbyopia that allows them to reduce or even eliminate the need for reading glasses. More than the drop itself, I love the mindset shift it’s going to create in our patients to let them know that there’s something to address longsightedness other than reading glasses.

In what situations do you recommend VUITY or advise against it?

Arthur Cummings: I’d recommend it to early presbyopes, patients with previous laser vision correction that are becoming presbyopic or where their blended vision has run out of road, like a -1 D target – it should provide reading vision to 52 years of age or thereabouts. When this happens, VUITY may be an excellent bridge to enhance reading vision until they are ready for IOL surgery.

I would be careful with previous high myopes as pilocarpine has been seen to add to the risk of retinal detachment in high myopes.

David Goldman: Based on the clinical trials, I would still prescribe it to the older pseudophakic patients in my practice, but with a warning that it may not provide as much benefit.

Florian Kretz: Constriction of the pupil usually results in slight headaches. I would be very careful with prescribing presbyopia drops to migraine patients; it would not be my first choice.

Vance Thompson: For patients who are new presbyopes with great distance vision and a normal eye exam this seems like such a natural fit to start their presbyopia journey. Why not try it? Many will love it and some won’t. And the risk is low so why not have them decide after a trial if it is for them? And remember, for some it may not be as great for near as they want and they may use some readers, but I predict many will like it for computer and will also not have to grab their readers as much.

Blake Williamson: The trials looked at patients down to -4 D, so I would be more cautious with high myopes. They would certainly need a good retinal exam. I would recommend starting with patients in their 40s and 50s who don’t have high prescriptions and are just looking to get rid of reading glasses. There are various other potential functions of VUITY that can be examined further – perhaps pseudophakic patients after cataract surgery with a monofocal lens who would like to have better near vision? Many things are possible, but I would still start with the basic indication.
Have you had any feedback on VUITY from your patients? Do they see this as a major milestone?

David Goldman: I’ve seen a veritable cornucopia of responses. Some patients did not like it at all, while others were blown away by the results and feel it is a life changing technology. I have seen multifocal IOL patients say it helps with haloes in the evening.

Vance Thompson: My practice was in the FDA monitored trial for this drop in the US, so we were able to see in the trial that this was a game changer, and we are also seeing it in our post-approval patients. It is not for everyone, but it is helping a significant number of people. Also, remember, it is useful for post-refractive and cataract patients who may want additional help at near and intermediate. The drop is so versatile.

It has been amazing to see the look on a presbyopes face when they feel like they are turning back the clock. I had one patient say, “This is how I used to see up close!” This concept is very intuitive to patients and with proper patient education and quality pre-prescribing exams it can be a huge plus in their life.

Blake Williamson: Patients who have been prescribed VUITY by me are routinely gaining several lines of vision: from J7 to J2! It’s been amazing for me to watch. They are noticing that they don’t need their glasses as much in the workplace. I treat several golfers who tell me that not only can they fill out their score card on the golf course, but they notice an improvement in their distance vision, too! They are able to follow the golf ball better because of pinhole optics. Sometimes use of the drops also cuts out some of astigmatism and other aberrations. Other patients enjoy going to the restaurant and being able to read the menu without their reading glasses.

References
3. AbbVie, “US Food and Drug Administration approves VUITY (pilocarpine HCI ophthalmic solution) 1.25%, the first and only eye drop to treat presbyopia (age-related blurry near vision)” (2021). Available at: https://bit.ly/3rOaNQN.
The Hydrus Microstent received the highest grade for quality of supporting clinical data of any MIGS device in the 2020 American Academy of Ophthalmology® (AAO) Primary Open-Angle Glaucoma Preferred Practice Pattern® guidelines.¹

These guidelines are established by the AAO to provide evidence-based guidance for best practices and quality eye care.

Congratulations to our global investigators whose pioneering efforts have pushed the MIGS space forward as a trusted solution for patients with primary open-angle glaucoma.

hydrusmicrostent.com

© 2022 Ivantis, Inc. Ivantis and Hydrus are registered trademarks of Ivantis, Inc. American Academy of Ophthalmology and Preferred Practice Pattern are trademarks of American Academy of Ophthalmology. All rights reserved. IM-0100 Rev A
Telemetry for Glaucoma Management During the Pandemic

Kaweh Mansouri shares the pros and cons of using telemedicine – including remote measurements – for glaucoma patients

In order to appropriately manage glaucoma, the clinician needs at least three parameters measured reliably: IOP measurement, the patient’s visual field, and fundus exam in the form of OCT or fundus photography. None of these measurements can be taken easily and consistently at home. For IOP, there are home tonometry devices available, but they’re not common and at least one third of patients has been shown to struggle to obtain reliable measurements despite previous training. There are sensors, such as Eyemate (Implandata, Germany) approved in Europe that can be implanted in the eye during cataract or glaucoma surgery, which stay in the eye for the patient’s lifetime and measure the IOP at any given point. The implants are connected to an external device, which can transmit the results to the physician. These sensors came in very useful during the initial COVID-19-related lockdowns. Studies have shown that the data transmitted by the sensors proved useful for monitoring patients during the first lockdown when it was impossible for glaucoma specialists to see the patients (1). For those patients whose target IOP was as expected, this was reassuring news for the patient and the physician and avoided unnecessary visits, and in the few cases where the IOP measurements were higher than expected, additional medication was sent to the patients or they were invited in for surgery.

For one of these studies, we had access to 8415 IOP measurements from 370 measurement days of 24 patients. We looked at variations of IOP in a short-term period of three months, and a longer one of one year and beyond. We found that even during the short period, the IOP was only moderately reproducible, and in the longer term it wasn’t reproducible at all – the variation was huge. This shows that our current way of measuring IOP is insufficient. It is almost surprising that we manage our glaucoma patients as well as we do with such imperfect data, but think what we could do if we had access to other types of data, such as night-time measurements, data obtained during daily activities, and similar. The types of patients’ daily activities and the way they impact on their IOP measurements should be taken into account for risk stratification, in a truly patient-centric model of glaucoma management.

As I mentioned, IOP is only one of the three key elements of assessing glaucoma progression. I have now seen really interesting start-ups offering approaches to obtain visual field measurements and fundus photography or OCT at a patient’s home. It seems like telemedicine, and telemetry in particular, has made huge advances over the past few months. These innovations can be extremely useful as we navigate managing our patients’ glaucoma effectively in difficult circumstances, so I hope we can continue using them even when we are no longer in a pandemic.

Nevertheless, I don’t think these technologies will replace office visits. In my opinion, there are three components that make face-to-face appointments unique. First, patients simply like to see their physician in person. There is an important relationship that develops with patients who suffer from a chronic disease such as glaucoma that is best cultivated in person. Second, there are some interventions, such as SLT, that can be done immediately, on the same visit, when the need arises. Third, in-person visits are hugely valuable for educating fellows and residents.

Reference
The way we started managing glaucoma when the pandemic started might be partly what we have been aspiring to, but this transformation of the way care for patients has been forced upon us quite suddenly. Glaucoma specialists have known for a long time that with the aging population, the way we used to manage patients was unsustainable. This is where virtual clinics/telemedicine come in, where the patient’s data is collected without the need for them to see a physician. What follows is an asynchronous review of that data, with the specialist making contact with the patient by letter or phone call.

Risk stratification is a crucial aspect of this type of care. We always aimed to assess risk accurately, but we would often test even our low-risk patients frequently. Now – this has had to change. Surgical strategies have also been adapted, with surgeons considering approaches requiring less intensive follow ups.

There are many patients who will come to harm due to delays in their glaucoma management, but there is a big number of them who will not. There are even patients who stop using their anti-glaucoma eye drops and are better for it, as the side effects are gone, and their disease doesn’t progress. The issue is, we don’t know which patient belongs to which risk group, so reviewing available evidence is crucial.

Originally, at Moorfields Eye Hospital, we didn’t have a proper system for analyzing these data, and we would go through each set of notes individually. A system has slowly been developing, relying heavily on the risk assessment done by the last glaucoma specialist who saw the patients (how long they thought the patient should wait for their next appointment) and average
“Surgical strategies have been adapted, with surgeons considering approaches requiring less intensive follow ups.”

intervals between the patient’s visits – the longer the average intervals, the more stable the patient is deemed to be. In the near future, we need better, more objective ways of stratifying risk, such as using visual field mean deviation and other factors.

Before the pandemic, our healthcare services in the UK were completely stretched, and now the capacity has reduced again due to social distancing, so risk stratification has helped us deal with this situation.

Eventually, I see a future where we can use people’s genetic information along with complex assessments of their imaging data, perhaps with improved intraocular pressure measurements, to enhance our risk calculations. To make this a reality, we have to start collecting digital data, which could be as simple as getting all patients’ records collected on EMR systems – but those EMR platforms would have to all be coded in the same way to enable comparisons across different systems. Glaucoma
Practice Fundamental:
Glaucoma

Kaweh Mansouri
specialists now understand the need for these risk assessments better than ever.

Constance Okeke, glaucoma specialist at Virginia Eye Consultants, Assistant Professor of Ophthalmology, Eastern Virginia Medical School, Norfolk, Virginia, USA

Since the start of 2020, there have been a number of changes to my practice. My team and I have had to change the way in which we approach patients in our clinics, as many of them weren’t feeling comfortable coming into our office. For the first time, we introduced telemedicine in glaucoma treatment – it was a completely new model. We used a hybrid technique of patients coming in just for diagnostic tests, which we would follow up with a phone call to review the test, along with the exiting medical records. We would assess whether the patient was stable or if there was a need for intervention – a change in management or a laser procedure. It was a challenge to implement this in a practice with multiple clinicians.

I developed my own risk stratification algorithm – dependent on how often patients had visits scheduled in the past, changes in their medications, and the stage of their disease – and giving patients a green, amber, or red light, making sure that “red lights” would be brought in for an appointment as soon as possible.

Looking at the patient population at this time, I realized again what a disruptive disease glaucoma can be. Many patients who had missed their appointments and ran out of medication did not get in touch, and once they came in for a visit, I noticed that their disease progressed substantially. As a result, I started doing a lot more surgical interventions to make up for the time when glaucoma wasn’t kept under control.

Now, I have even more appreciation for the importance of educating our patients about how vital appropriate monitoring of the condition is. One-on-one education with a patient is great, but it requires the patient to be in front of us. Another way is using online videos, such as my educational series. We should also be reaching out to patients via text or email to remind them of their appointments, as well as giving them information about safe ways to visit the clinic. If they don’t feel it is safe to come in, they should be offered a virtual visit. Patients have to be absolutely clear that refilling their medication should be their first priority, and it can be done with a simple phone call when they are close to running out.

Kaweh Mansouri, glaucoma specialist, Consultant Ophthalmologist at Montchoisi Clinique in Lausanne, Switzerland and Department of Ophthalmology, University of Colorado, Denver, USA

Various countries have had different strategies to cope with the COVID-19 pandemic as they have been affected differently. Of course, they also have a different density of ophthalmologists, and glaucoma specialists specifically. Switzerland has a high density of ophthalmologists, and we don’t tend to rely on optometrists as heavily as ophthalmologists in some other countries, so we have not made much use of virtual clinics and asynchronous reviews. During the first lockdown, non-urgent glaucoma treatments were stopped – in our clinic, 95 percent of our glaucoma patients’ care fell into this category. We asked patients not to come into the clinic for six to seven weeks, and then got to work on the backlog of cases. We extended our working hours and added Saturday clinics. After that, it was the “new normal” glaucoma management, which has meant that we see our elderly glaucoma patients more or less as often as we did before the pandemic began. It seems to me that visits take longer now, as patients have more trouble understanding what we are saying due to facemasks.

We have done more SLT procedures, as they don’t require patients to be as dependent on medications, and we have done some virtual visits, which we had not done before, but – in my experience – they haven’t amounted to more than 5 percent of all glaucoma appointments, and we only offer them to younger patients who have stable glaucoma.

To stratify risk properly, we need an objective and efficient AI system that will analyze centralized data – technology will help us greatly in the future. Innovative healthcare systems with digital centralized databases will get there quicker than others.
Ophthalmology Innovation Source
is the prime spot for Ophthalmic Innovation.
We offer top-notch live events where
ground-breaking innovations are unveiled and
impactful connections are made between entrepreneurs,
start-up companies, clinical thought leaders, industry executives
and investment professionals.

In addition to our live events we provide compelling podcasts, news, videos,
and virtual programs — plus our latest and most exciting addition is the
EyeDealSource™ database of ophthalmic start-up companies and investors! This
platform takes meaningful connections to the next level! Its members will have
insight and gainful information to drive innovation forward at their fingertips
with the ability to identify companies based on technology type, clinical
indication, stage of development, funding to date and much more!
Positive Profiling. A cross institution and hospital clinical trial has identified a correlation between retinopathy of prematurity (ROP) in infants and their metabolic profile – potentially enabling earlier diagnosis and treatment. Both the current diagnosis and treatment for ROP are available after the eye damage is irreversible – the treatments themselves can also be dangerous. Metabolic profiling by mass spectrometry showed a strong correlation between the profile and retinal neovascularization seen in ROP. With this information, specific biomarkers can be identified not only for the diagnosis, but also for prevention of ROP.

Intelligent Diagnosis. Stargardt disease progression can vary massively, affecting different areas of the retina with inconsistent severity. This ultimately makes clinical trials for Stargardt therapeutics a minefield of patient selection and treatment outcomes – imagine deciding the better runner between Usain Bolt and Haile Gebrselassie? But researchers have developed an artificial intelligence based, deep learning method, that quantifies the loss of cells within the retina. Spectral-domain OCT images over five years (66 patients) determined that Stargardt patient loss in the ellipsoid zone of the retina was consistent and predictable over time – providing a benchmark for future trials.

Release the Kallikrein. Current therapies for diabetic macular edema (DME) consist of inhibiting vascular endothelial growth factor (VEGF) to curb disruption at the blood-retinal barrier – yet 20 to 40 percent of patients don’t respond to treatment. A phase 1 clinical trial has shown that an alternative target, inhibition of the kallikrein-kinin system, is a viable therapeutic option for DME. Importantly the drug, THR-149, was safe and well tolerated, and improved BCVA. An exciting first in human result and promising for the future.

Injection Rejection. Aqueous protein biomarkers indicate whether wet age-related macular degeneration (AMD) patients can reduce their injection treatment burden – 30 percent of whom may be able to stop the injections altogether. This study follows the development of new anti-VEGF intraocular therapeutics designed to reduce the frequency of injections – currently these are bi-monthly, indefinite, and are potentially unsustainable given the rise of wet AMD in our aging population. The proteomic analysis established that a principal component of drusen, ApoB100, is increased in patients who are treated and may benefit from less frequent injections.

See references online.

IN OTHER NEWS

COVID-19 weak spot. Single cell sequencing of human retina and choroid show low vulnerability to SARS-CoV-2 infection at the retina, but choroidal vasculature is the posterior segment’s Achilles heel.

Plugging up the hole. A retrospective cohort study shows that human amniotic membrane has a 91 percent success rate at closing macular holes.

Changing the sheets. Transplantation of a retinal cell sheet grown from genetically modified human embryonic stem cells has better functionality and grafting – is the next stop human testing?

Corona case. A case study found anterior ischemic optic neuropathy to be another ocular manifestation that can occur following COVID-19 infection.

Better safe than sorry. Concurrent diabetic retinopathy and arteriovenous nicking can indicate coronary microcirculation dysfunction.
Why is AMD – the most common cause of blindness – still without any effective treatment? There are various reasons, but a significant issue is the lack of an effective research platform in drug development that drives translation from bench to bedside.

Boot camp blues
Before entering the clinical stages of research, drug candidates (recruits) must pass boot camp – more formally known as in vitro and animal testing. Unfortunately, traditional cell culture and animal experiments do not reflect the exact condition of human organs, which causes many recruits to drop out of the pipeline.

Our aim is to improve the process by making a human tissue testing platform. By being able to more accurately mimic function in a living and breathing human, several serious problems could be resolved.

Our approach is to use a combination of decellularized extracellular matrix (dECM) and 3D cell printing technology to better create a working human model in the lab (1). The dECM – a hydrogel rich in extracellular matrix components from the actual tissue – acts as a “bioink” when mixed with the cells – enabling superior cell maturation compared with conventional bioink. Furthermore, the latest 3D cell printing technology facilitates the fabrication of complex and functional multicellular tissue structures.

We have expertise in both of these technologies. Recently, we developed the retina dECM (RdECM) bioink, and printed a retina using 3D cell printing technology. In cultured retinas, cells not only proliferate well, but also express retinal-related markers that were not shown in previous in
Our key concept is “the right thing in the right place.” The more natural functions that can be obtained result in tissue that is more similar to the real tissue environment. The eye in general – and the retina in particular – have complex structures made up of different cells and ECM materials. However, traditional technologies cannot reproduce the 3D structure and ECM environment of the organ. dECM bioinks and 3D cell printing technology help overcome these limitations. And as 3D printing technology constantly advances, so too does 3D cell printing, enabling us to recreate the complex structure of human organs in an increasingly accurate way.

Our work with dECM has led us to develop various types of tissue alternatives and in vitro models using 3D cell printing and dECM bioinks – finding the advantages and disadvantages to each. The dECM bioinks are rich in ECM materials related to tissue-specific microenvironments and help cells mature with their natural functions. By using more advanced bioinks, 3D cell printing technology is able to create models that better replicate the real tissue; for example, by facilitating proper intercommunication between each cell type and between the cells and the ECM – both of which are crucial to effective and realistic tissue functions.

One element that we add to the bioink is collagen. This is crucial to enable the crosslinking and solidification of dECM based bioinks, and without collagen the RdECM, in particular, will not form a suitable 3D structure. We actually chose collagen because it is widely used for 3D tissue engineering and very conventional. Collagen is well known to be biocompatible with cells and the crosslinking capabilities make it a good companion for our dECM bioinks – enabling the formation of a 3D structure whilst also reinforcing the physical properties that are necessary for 3D printing.

Although our major focus has been the development of retinal tissue, we have developed or are currently developing other alternative tissues using our dECM and 3D cell printing processes – including brain, heart, liver, skin, and even the cornea and Bruch’s membrane of the eye.

The nature of our tissue engineering process – using decellularized tissues of the same tissue origin to create a dECM bioink – is something that can be applied easily to many tissue types. As our work into other 3D cell printing other tissues grows, we can potentially expand this process to aid transplantation and research studies throughout the body.

Impact on the visual field

So where does our developed retina lead us? Functional retinas are in demand not only for development and testing of new drugs but also for transplantation – and our 3D printed retina could be used in both cases.

But we don’t want to stop developing the model. We have plans to improve upon our retina tissue model by introducing other components of the eye, including the retinal pigment epithelium (RPE) and choroid. The...
What key qualities separate a great ophthalmologist from a good one?

By Matthew O’Donnell

As with other professions, ophthalmologists are not all equal in skill and performance. I believe that an accumulation of skills and qualities ultimately defines an ophthalmologist as great rather than good. Therefore, identifying which attributes need to be boosted – and how – can take an ophthalmologist to the next level. And in a profession as busy as ophthalmology, with an estimated 400,000 cataract operations taking place annually, improving the quality of your performance is not simply desirable, it’s necessary (1).

Essential qualities of a good ophthalmologist include visuospatial awareness, manual dexterity, and a comprehensive understanding of biomechanical concepts (2). But great ophthalmologists have skills and traits that allow them to perform using more than technical skills alone; human factor research indicates that non-technical skills for surgeons (NOTSS) – including communication, teamwork, decision-making, leadership, and situational awareness – are crucial for improving surgical team performance (3). These skills do not come naturally to us all, but they can be developed and then honed with appropriate training. I’d go as far as saying that, without these non-technical skills, ophthalmic surgeons are unable to reach their full potential – and that’s why such training is embedded into the Royal College of Ophthalmologists’ surgical curriculum (4).

Communication – art and science
The doctor–patient relationship isn’t what it once was – with a seismic shift from a paternalistic model to a patient-centered one (5). What does that mean for all doctors? High-quality communication is essential. Here, actively listening to patient’s concerns and expectations and appropriately outlining concepts and options are key ways of demonstrating respect to patients – whilst also improving satisfaction and safety (6). Effective communication spans both verbal and non-verbal means, and also has a decisive role in the interaction between team members. Clearly positioning yourself as the head of the team, and solidifying verbal commands with clarity are ways in which you can avoid miscommunication – and adverse events (7).

Real team players
Interdisciplinary practice and teamwork are the modern mantras in the effective management of ophthalmology – and that’s only been further highlighted during the COVID-19 pandemic. More flexibility in how patients are triaged and a greater use of virtual clinics (especially in postoperative reviews) has increased
the number of consultations within the specialty (8). Individual behaviors and the ability to work as part of an efficient team influence the resulting performance (9) – all ophthalmic surgeons should be aware of that truth and great surgeons must embrace it. Meredith Belbin’s comprehensive study of the elements of a successful team also applies to ophthalmology. Belbin describes nine team roles necessary for a group to perform at its peak (shown in Table 1), while recognizing that individuals may exhibit behavioral traits from one or more of those roles. Each role has “a tendency to behave, contribute and interrelate with others in a particular way,” and is linked to personality and not necessarily to one’s profession. The technical role of an ophthalmic surgeon could be regarded in Belbin’s team roles as “implementer” – essential good at transforming service delivery models into practical actions. Successful surgical teams also tend to have members with behaviors that fulfill multiple roles – both concentrating the team’s abilities while preventing dilution of those abilities in the mass of the team. Belbin’s team roles also highlight an important concept: Nobody is perfect but a group can be. Ophthalmic surgical teams require a range of individuals with clearly defined roles, specific skill sets, and, of course, the ability to effectively work as part of the team!

Make or break
Great surgeons are decisive – but, as surgeon Atul Gawande said (1), “The core predicament of medicine is uncertainty.” Fortunately, ophthalmologists are not alone in the surgical decision-making process. In addition to consulting NICE management guidelines, you use contributions from the multidisciplinary surgical subspecialty teams for effective patient-specific management plans, helping decision making in all cases, from complex isolated injuries that require surgical subspecialists to complex polytrauma patients.

“Great ophthalmologists convey time-critical information to team members to accomplish a shared situational awareness.”

O Captain! My captain! motivate others to achieve high standards of care by conducting themselves with integrity while using high-quality, evidence-based medicine; for example, The Royal College of Ophthalmologists’ Standards for cataract surgery (11). The ability to optimistically relish a challenge is an important characteristic for surgeons who want to be great leaders – Holman describes this as being a winner rather than a whiner (12). Like enthusiasm, optimism is contagious in the surgical environment.

As a side note, teaching medical students provides an excellent opportunity for ophthalmologists to build their leadership skills, whilst inspiring the next generation.

Unaware beware
Situational awareness – a term first
coined by the aviation industry – is, in the context of ophthalmology, all about having an accurate perception of not only the surgical environment but also your impact on others, including any emotional impact (13). Great ophthalmologists convey time-critical information to team members to accomplish a shared situational awareness.

Here’s to greatness!
Ophthalmologists work in a highly charged environment with a wide spectrum of patients. They are required to be decisive and yet dynamic in their approach to both clinical and surgical problems. Simultaneously, they must also promote a positive workplace for a multidisciplinary team. They must be inspirational leaders who motivate others to work beyond the call of duty to improve patient safety and quality care outcomes.

The path towards greatness is actually a continuous journey of self-improvement – but it is also the surest route to a satisfying and successful career in ophthalmology.

Matthew O’Donnell is LAS Trust grade doctor at Surrey and Sussex Hospitals, East Surrey Hospital, UK.

References
1. Royal College of Ophthalmologists, “Ophthalmic services guidance,” Available at: https://bit.ly/3IWhacG

<table>
<thead>
<tr>
<th>Role</th>
<th>Contribution and Allowable Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>A respectable chairperson who clarifies goals and delegates well. This person can be seen as manipulative and offloading work.</td>
</tr>
<tr>
<td>Evaluator</td>
<td>Sees all options and judges accurately. Sober, strategic and discerning. Lacks drive and ability to inspire others.</td>
</tr>
<tr>
<td>Finisher</td>
<td>Ensures procedures are completed to perfection promptly. Reluctant to delegate and inclined to worry unduly.</td>
</tr>
<tr>
<td>Implementer</td>
<td>A pragmatic person who transforms ideas into action. Somewhat inflexible to respond to new possibilities.</td>
</tr>
<tr>
<td>Plant</td>
<td>An imaginative person who generates ideas. Is often too preoccupied to communicate efficiently.</td>
</tr>
<tr>
<td>Resource investigator</td>
<td>The entrepreneur who explores opportunities and develops contacts. Loses interest once initial enthusiasm has passed, non-finisher.</td>
</tr>
<tr>
<td>Shaper</td>
<td>The natural leader who has the drive to overcome obstacles. This person can be inclined to take umbrage.</td>
</tr>
<tr>
<td>Specialist</td>
<td>Provides skills which are in rare supply. Self-starting and dedicated. Overprotective of their job area boundaries.</td>
</tr>
<tr>
<td>Team worker</td>
<td>Co-operative and diplomatic. Indecisive in crunch situations.</td>
</tr>
</tbody>
</table>

Table 1. Belbin’s Team Roles (9).
One in a Million

Sitting Down With... Gladys Atto, ophthalmologist at Moroto Regional Referral Hospital, Moroto, Uganda
You're one of only 45 ophthalmologists in Uganda – a country of over 45 million people – and the only one in your region, Karamoja. What are the reasons for this shortage and is the situation improving? Students are not motivated enough to go into ophthalmology and other sub-specialties such as otolaryngology or dermatology, as those are seen as focusing on very small parts of medicine. Money is a big driver and candidates imagine that these paths will not be profitable.

What I see as an even more pressing concern is the unequal distribution of ophthalmologists across Uganda, where we have around 14 regional referral hospitals. If each one of them had an ophthalmologist, we would have an equitable distribution of experts, but many of them are concentrated in urban areas, which attract most of ophthalmic specialists. Getting ophthalmologists into rural areas like the one I work in is a huge issue. People feel that such areas don't have enough amenities and don't provide opportunities to progress in their careers.

Why did you decide to practice in Karamoja?
The area where I grew up, around 450 km from Karamoja, only has one ophthalmologist, but for me, having even one specialist in a region makes such a big difference. When people know that there is a specialist in their regional hospital, even if it's 100 km away, it gives them hope. But in Karamoja, there were no ophthalmologists, and patients who needed eye care felt hopeless and helpless. I knew that the burden of disease was high in the region and there were no ophthalmic surgeries taking place here, except for those performed occasionally by visiting doctors.

I could really see the potential of this place and the need for an ophthalmologist willing to practice here. When I was applying for a Sightsavers scholarship, interviewers asked me where I wanted to work. I replied that I wished to work in Karamoja and they thought I was only saying that to be guaranteed the sponsorship, but I had already got in touch with the local hospital director and had an agreement that that's where I would work after finishing my education. Now, my mission is to make sure other ophthalmic specialists come to work here, so everywhere I go, I talk about how proud I am of my job, I wear the best local clothes, and really try to impress people and let them know how wonderful the region is. Karamoja is one of those remote places that you have to see to find out more about it and want to stay.

What made you choose ophthalmology?
Becoming a doctor was my dream already in my childhood. My primary school teachers used to say that I talked that much I would become a lawyer – like the great Ugandan role model, Julia Sebutinde who serves on the International Court of Justice. I was adamant I would become a doctor instead!

When I was doing my internship in Uganda, it was a very rigorous process. What I found was that I didn't enjoy general medicine as much as I had previously. Seeing patients with chronic diseases that would not get better was really bringing me down. I found that eye care gave me an opportunity to focus on a small part of the body, which really suited me. I'm generally very focused on detail, and ophthalmology – especially ophthalmic surgery – is so great for that!

Tell me about your mentors…
My first eye care mentor was John Onyango, who is now the Head of Department of Ophthalmology at Mbarara University of Science and Technology in Western Uganda. When he taught me at medical school, he would walk into the classroom without any notes or books – everything was in his head. The way he would talk about ophthalmology and the shortage of eye care specialists in the country was truly inspiring. When I was about to start my internship, he called me and reminded me that I did so well in ophthalmology that I should think of following this path – and offered to continue to teach me. I am very grateful that he did that. During my ophthalmology residency, my course coordinator was Simon Arunga. He was instrumental in teaching me surgical skills. Then, when I went to the London School of Hygiene and Tropical Medicine in the UK, my supervisor was Allen Foster. He had been an impressive figure with so many publications under his name, and yet suddenly he was calling me personally to talk about my research! He still checks on me regularly to make sure I'm applying the skills he taught me. There have been many other important people I have crossed paths with in my career so far – I feel very privileged.
smooth precision in your hands

Providing optimal interface with the canal of Schlemm for excisional goniotomy

RAMP & DUAL BLADES

ROUNDED HEEL

TAPERED SIDES & FOOTPLATE

For more information visit www.newworldmedical.com